22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation

      discussion
      Diabetes
      American Diabetes Association

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brown fat development and function. This review summarizes recent advances in our understanding of the transcriptional mechanisms that control brown and beige fat cell development.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional control of brown fat determination by PRDM16.

          Brown fat cells are specialized to dissipate energy and can counteract obesity; however, the transcriptional basis of their determination is largely unknown. We show here that the zinc-finger protein PRDM16 is highly enriched in brown fat cells compared to white fat cells. When expressed in white fat cell progenitors, PRDM16 activates a robust brown fat phenotype including induction of PGC-1alpha, UCP1, and type 2 deiodinase (Dio2) expression and a remarkable increase in uncoupled respiration. Transgenic expression of PRDM16 at physiological levels in white fat depots stimulates the formation of brown fat cells. Depletion of PRDM16 through shRNA expression in brown fat cells causes a near total loss of the brown characteristics. PRDM16 activates brown fat cell identity at least in part by simultaneously activating PGC-1alpha and PGC-1beta through direct protein binding. These data indicate that PRDM16 can control the determination of brown fat fate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure.

            Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese.

              The mitochondrial uncoupling protein (UCP) in the mitochondrial inner membrane of mammalian brown adipose tissue generates heat by uncoupling oxidative phosphorylation. This process protects against cold and regulates energy balance. Manipulation of thermogenesis could be an effective strategy against obesity. Here we determine the role of UCP in the regulation of body mass by targeted inactivation of the gene encoding it. We find that UCP-deficient mice consume less oxygen after treatment with a beta3-adrenergic-receptor agonist and that they are sensitive to cold, indicating that their thermoregulation is defective. However, this deficiency caused neither hyperphagia nor obesity in mice fed on either a standard or a high-fat diet. We propose that the loss of UCP may be compensated by UCP2, a newly discovered homologue of UCP; this gene is ubiquitously expressed and is induced in the brown fat of UCP-deficient mice.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 2015
                7 June 2015
                : 64
                : 7
                : 2369-2375
                Affiliations
                [1]Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
                Author notes
                Corresponding author: Patrick Seale, sealep@ 123456upenn.edu .
                Article
                0203
                10.2337/db15-0203
                4477361
                26050669
                ce1a7a36-6b9e-4a85-8949-5184575727e1
                © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
                History
                : 11 February 2015
                : 11 March 2015
                Page count
                Pages: 7
                Funding
                Funded by: National Institute of General Medical Sciences http://dx.doi.org/10.13039/100000057
                Award ID: DP2OD007288
                Categories
                Diabetes Symposium: Browning of Adipose Tissue—What's New?

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article