17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stance Detection : A Survey

      1 , 2
      ACM Computing Surveys
      Association for Computing Machinery (ACM)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Automatic elicitation of semantic information from natural language texts is an important research problem with many practical application areas. Especially after the recent proliferation of online content through channels such as social media sites, news portals, and forums; solutions to problems such as sentiment analysis, sarcasm/controversy/veracity/rumour/fake news detection, and argument mining gained increasing impact and significance, revealed with large volumes of related scientific publications. In this article, we tackle an important problem from the same family and present a survey of stance detection in social media posts and (online) regular texts. Although stance detection is defined in different ways in different application settings, the most common definition is “automatic classification of the stance of the producer of a piece of text, towards a target, into one of these three classes: { Favor , Against , Neither }.” Our survey includes definitions of related problems and concepts, classifications of the proposed approaches so far, descriptions of the relevant datasets and tools, and related outstanding issues. Stance detection is a recent natural language processing topic with diverse application areas, and our survey article on this newly emerging topic will act as a significant resource for interested researchers and practitioners.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Glove: Global Vectors for Word Representation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Scikit-learn Machine Learning in Python.

                Bookmark

                Author and article information

                Contributors
                Journal
                ACM Computing Surveys
                ACM Comput. Surv.
                Association for Computing Machinery (ACM)
                0360-0300
                1557-7341
                January 31 2021
                January 31 2021
                : 53
                : 1
                : 1-37
                Affiliations
                [1 ]TÜBİTAK Energy Institute, Ankara, Turkey
                [2 ]Bilkent University, Ankara, Turkey
                Article
                10.1145/3369026
                ce809d10-3a1c-4661-b831-534a3447ab3b
                © 2021
                History

                Comments

                Comment on this article