2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of Ras protein activator like 2 produces antitumor effects in gastric cancer via the suppression of YAP1 activation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ras protein activator like 2 (RASAL2) has a cancer‐related function, but plays inconsistent roles in different malignancies. This project was designed to determine the role of RASAL2 in carcinogenesis in gastric cancer. The Cancer Genome Atlas data revealed high levels of RASAL2 in gastric cancer tissue, which was confirmed in clinical specimens of gastric cancer via real‐time quantitative PCR and western blotting assays. High RASAL2 was correlated with a reduced survival rate in gastric cancer patients. In gastric cancer cell lines, the silencing of RASAL2 restrained cellular proliferation, invasion and epithelial‐to‐mesenchymal transition, while enhancing chemosensitivity to cisplatin. Mechanistically, the silencing of RASAL2 was found to inhibit the activation of Yes‐associated protein 1 (YAP1), a pro‐oncogenic protein in gastric cancer, and decrease the expression of YAP1 target genes. The re‐expression of constitutively active YAP1 substantially reversed RASAL2‐silencing‐produced antitumor effects. Moreover, treatment with YAP1 inhibitors could diminish RASAL2‐overexpression‐evoked oncogenic effects in gastric cancer cells. Additionally, gastric cancer cells with RASAL2 silencing exhibited a reduced ability to form xenograft tumors in nude mice. Collectively, our data demonstrate that the silencing of RASAL2 has noteworthy antitumor effects in gastric cancer cells via the suppression of YAP1 activation. This project underscores a vital role of the RASAL2/YAP1 axis in gastric progression and indicates that targeting this oncogenic axis may be applied as a potential therapeutic option for gastric cancer.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control.

              The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Toxicology
                Environmental Toxicology
                Wiley
                1520-4081
                1522-7278
                March 2022
                November 26 2021
                March 2022
                : 37
                : 3
                : 527-538
                Affiliations
                [1 ] Department of Medical Oncology The First Affiliated Hospital of Xi'an Jiaotong University China
                [2 ] Department of Gynecologic Cancer Shaanxi Provincial Tumor Hospital China
                Article
                10.1002/tox.23418
                cea3b9eb-9c81-46bb-ac8b-a196cce55cc4
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article