14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Potential Role of Cell Penetrating Peptides in the Intracellular Delivery of Proteins for Therapy of Erythroid Related Disorders

      other
      * ,
      Pharmaceuticals
      MDPI
      protein transduction, CPPs, erythroid related disorders, protein therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The erythroid related disorders (ERDs) represent a large group of hematological diseases, which in most cases are attributed either to the deficiency or malfunction of biosynthetic enzymes or oxygen transport proteins. Current treatments for these disorders include histo-compatible erythrocyte transfusions or allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy delivered via suitable viral vectors or genetically modified HSCs have been under way. Protein Transduction Domain (PTD) technology has allowed the production and intracellular delivery of recombinant therapeutic proteins, bearing Cell Penetrating Peptides (CPPs), into a variety of mammalian cells. Remarkable progress in the field of protein transduction leads to the development of novel protein therapeutics (CPP-mediated PTs) for the treatment of monogenetic and/or metabolic disorders. The “concept” developed in this paper is the intracellular protein delivery made possible via the PTD technology as a novel therapeutic intervention for treatment of ERDs. This can be achieved via four stages including: (i) the production of genetically engineered human CPP-mediated PT of interest, since the corresponding native protein either is missing or is mutated in the erythroid progenitor cell (ErPCs) or mature erythrocytes of patients; (ii) isolation of target cells from the peripheral blood of the selected patients; (iii) ex vivo transduction of cells with the CPP-mediated PT of interest; and (iv) re-administration of the successfully transduced cells back into the same patients.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo protein transduction: delivery of a biologically active protein into the mouse.

          Delivery of therapeutic proteins into tissues and across the blood-brain barrier is severely limited by the size and biochemical properties of the proteins. Here it is shown that intraperitoneal injection of the 120-kilodalton beta-galactosidase protein, fused to the protein transduction domain from the human immunodeficiency virus TAT protein, results in delivery of the biologically active fusion protein to all tissues in mice, including the brain. These results open new possibilities for direct delivery of proteins into patients in the context of protein therapy, as well as for epigenetic experimentation with model organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery.

            A basic peptide derived from human immunodeficiency virus (HIV)-1 Tat protein (positions 48-60) has been reported to have the ability to translocate through the cell membranes and accumulate in the nucleus, the characteristics of which are utilized for the delivery of exogenous proteins into cells. Based on the fluorescence microscopic observations of mouse macrophage RAW264.7 cells, we found that various arginine-rich peptides have a translocation activity very similar to Tat-(48-60). These included such peptides as the d-amino acid- and arginine-substituted Tat-(48-60), the RNA-binding peptides derived from virus proteins, such as HIV-1 Rev, and flock house virus coat proteins, and the DNA binding segments of leucine zipper proteins, such as cancer-related proteins c-Fos and c-Jun, and the yeast transcription factor GCN4. These segments have no specific primary and secondary structures in common except that they have several arginine residues in the sequences. Moreover, these peptides were able to be internalized even at 4 degrees C. These results strongly suggested the possible existence of a common internalization mechanism ubiquitous to arginine-rich peptides, which is not explained by a typical endocytosis. Using (Arg)(n) (n = 4-16) peptides, we also demonstrated that there would be an optimal number of arginine residues (n approximately 8) for the efficient translocation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell-penetrating peptides: classes, origin, and current landscape.

              With more than ten new FDA approvals since 2001, peptides are emerging as an important therapeutic alternative to small molecules. However, unlike small molecules, peptides on the market today are limited to extracellular targets. By contrast, cell-penetrating peptides (CPPs) can target intracellular proteins and also carry other cargoes (e.g. other peptides, small molecules or proteins) into the cell, thus offering great potential as future therapeutics. In this review I present a classification scheme for CPPs based on their physical-chemical properties and origin, and I provide a general framework for understanding and discovering new CPPs. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                07 January 2013
                January 2013
                : 6
                : 1
                : 32-53
                Affiliations
                Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR54124 Macedonia, Greece; E-Mail: tsif@ 123456pharm.auth.gr
                Author notes
                [†]

                These two authors contributed equally to this manuscript.

                [* ]Author to whom correspondence should be addressed; E-Mail: lefkotea@ 123456pharm.auth.gr ; Tel: +30-2310-997636; Fax: 0030-2310-997674.
                Article
                pharmaceuticals-06-00032
                10.3390/ph6010032
                3816679
                cebc96a4-21c7-4cbd-9419-c54f02ae6bd4
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 31 October 2012
                : 20 December 2012
                : 27 December 2012
                Categories
                Concept Paper

                protein transduction,cpps,erythroid related disorders,protein therapy

                Comments

                Comment on this article