9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability of E-cadherin junctions in response to DPAGT1 inhibition. We show the impact of pathway dysregulation through measurements of cell migration in scratch-wound assays. Collectively, our results highlight the importance of numerical analyses of cellular networks dynamics to gain insights into physiological processes and potential design of therapeutic strategies to prevent epithelial cell invasion in cancer.

          Author Summary

          In epithelial tissues, protein N-glycosylation functions in a network with Wnt/β-catenin signaling and E-cadherin adhesion that maintains a balance between cell proliferation and intercellular adhesion. A key component of the network is β-catenin, a structural partner of E-cadherin junctions and transcriptional effector of Wnt/ β-catenin signaling that is also a transcriptional co-activator of DPAGT1, the first and key regulatory gene in the N-glycosylation pathway. Here, we describe the first mathematical model that accounts for the interactions among DPAGT1, E-cadherin, and Wnt/β-catenin signaling, revealing their key regulatory nodes. We use the model to make novel predictions, which we then validate experimentally by inhibiting β-catenin activation of DPAGT1 expression. We propose that this numerical model can be used to predict the network’s dynamics in cellular physiology and pathology.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Cell adhesion: the molecular basis of tissue architecture and morphogenesis.

          A variety of cell adhesion mechanisms underlie the way that cells are organized in tissues. Stable cell interactions are needed to maintain the structural integrity of tissues, and dynamic changes in cell adhesion participate in the morphogenesis of developing tissues. Stable interactions actually require active adhesion mechanisms that are very similar to those involved in tissue dynamics. Adhesion mechanisms are highly regulated during tissue morphogenesis and are intimately related to the processes of cell motility and cell migration. In particular, the cadherins and the integrins have been implicated in the control of cell movement. Cadherin mediated cell compaction and cellular rearrangements may be analogous to integrin-mediated cell spreading and motility on the ECM. Regulation of cell adhesion can occur at several levels, including affinity modulation, clustering, and coordinated interactions with the actin cytoskeleton. Structural studies have begun to provide a picture of how the binding properties of adhesion receptors themselves might be regulated. However, regulation of tissue morphogenesis requires complex interactions between the adhesion receptors, the cytoskeleton, and networks of signaling pathways. Signals generated locally by the adhesion receptors themselves are involved in the regulation of cell adhesion. These regulatory pathways are also influenced by extrinsic signals arising from the classic growth factor receptors. Furthermore, signals generated locally be adhesion junctions can interact with classic signal transduction pathways to help control cell growth and differentiation. This coupling between physical adhesion and developmental signaling provides a mechanism to tightly integrate physical aspects of tissue morphogenesis with cell growth and differentiation, a coordination that is essential to achieve the intricate patterns of cells in tissues.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assembly of asparagine-linked oligosaccharides.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected].

              Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                18 July 2016
                July 2016
                : 12
                : 7
                : e1005007
                Affiliations
                [1 ]Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
                [2 ]Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, Massachusetts, United States of America
                [3 ]Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, United States of America
                University of Illinois at Urbana-Champaign, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DAV MAK. Performed the experiments: DAV MS KS. Analyzed the data: DAV MS MAK. Contributed reagents/materials/analysis tools: MAK MHZ. Wrote the paper: DAV MAK MHZ.

                Article
                PCOMPBIOL-D-15-01953
                10.1371/journal.pcbi.1005007
                4948889
                27427963
                cee9931c-9dd5-4b4b-9bb9-a44e8df1df09
                © 2016 Vargas et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 November 2015
                : 30 May 2016
                Page count
                Figures: 8, Tables: 1, Pages: 26
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000054, National Cancer Institute;
                Award ID: NIH R25 CA153955
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: U01-CA177799
                Award Recipient :
                Research reported in this publication was supported by Boston University’s Cross-Disciplinary Training in Nanotechnology for Cancer and the NCI under Award Number NIH R25 CA153955 as well as NIH grant U01-CA177799. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Cell Signaling
                Signaling Cascades
                WNT Signaling Cascade
                Computer and Information Sciences
                Network Analysis
                Signaling Networks
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Endoplasmic Reticulum
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Secretory Pathway
                Endoplasmic Reticulum
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Research and Analysis Methods
                Precipitation Techniques
                Immunoprecipitation
                Physical Sciences
                Chemistry
                Physical Chemistry
                Chemical Equilibrium
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cytoplasm
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article