16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cytokine Expression in Periodontal Health and Disease

      ,
      Critical Reviews in Oral Biology & Medicine
      SAGE Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones

          A cytokine synthesis inhibitory factor (CSIF) is secreted by Th2 clones in response to Con A or antigen stimulation, but is absent in supernatants from Con A-induced Th1 clones. CSIF can inhibit the production of IL-2, IL-3, lymphotoxin (LT)/TNF, IFN-gamma, and granulocyte-macrophage CSF (GM-CSF) by Th1 cells responding to antigen and APC, but Th2 cytokine synthesis is not significantly affected. Transforming growth factor beta (TGF-beta) also inhibits IFN-gamma production, although less effectively than CSIF, whereas IL-2 and IL-4 partially antagonize the activity of CSIF. CSIF inhibition of cytokine synthesis is not complete, since early cytokine synthesis (before 8 h) is not significantly affected, whereas later synthesis is strongly inhibited. In the presence of CSIF, IFN-gamma mRNA levels are reduced slightly at 8, and strongly at 12 h after stimulation. Inhibition of cytokine expression by CSIF is not due to a general reduction in Th1 cell viability, since actin mRNA levels were not reduced, and proliferation of antigen-stimulated cells in response to IL-2, was unaffected. Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40. The potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6.

            It has been reported that soluble interleukin (IL)-6 receptor (sIL-6R) is detected in the serum of healthy individuals and its level is increased in patients with multiple myeloma and human immunodeficiency virus infection. Although several reports have suggested that sIL-6R potentiates IL-6 action, its physiological role remains unclear. In this study, we examined the role of sIL-6R on osteoclast formation by IL-6, using a coculture of mouse osteoblasts and bone marrow cells. Neither recombinant mouse IL-6 (mIL-6) nor mouse sIL-6R (smIL-6R) induced osteoclast-like multinucleated cell (MNC) formation when they were added separately. In contrast, simultaneous treatment with mIL-6 and smIL-6R strikingly induced MNC formation. These MNCs satisfied major criteria of authentic osteoclasts, such as tartrate-resistant acid phosphatase (TRAP) activity, calcitonin receptors, and pit formation on dentine slices. The MNC formation induced by mIL-6 and smIL-6R was dose-dependently inhibited by adding monoclonal anti-mouse IL-6R antibody (MR16-1). It is likely that osteoblasts and osteoclast progenitors are capable of transducing a signal from a complex of IL-6 and sIL-6R through gp130, even though they may have no or a very small number of IL-6Rs. Factors such as IL-11, oncostatin M, and leukemia inhibitory factor, which are known to exert their functions through gp130 (the signal-transducing chain of IL-6R), also induced MNC formation in our coculture system. These results suggest that increased circulating or locally produced sIL-6R induces osteoclast formation in the presence of IL-6 mediated by a mechanism involving gp130. This may play an important physiological or pathological role in conditions associated with increased osteoclastic bone resorption.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of inflammatory mediators in the pathogenesis of periodontal disease.

              Bruce Page (1991)
              The role of bacteria in the initiation of periodontitis is well-documented and the end result, destruction of the alveolar bone and periodontal connective tissue, is readily observed; but the events occurring between these two points in time remain obscure and are the focus of this paper. Bacteria induce tissue destruction indirectly by activating host defense cells, which in turn produce and release mediators that stimulate the effectors of connective tissue breakdown. Components of microbial plaque have the capacity to induce the initial infiltrate of inflammatory cells including lymphocytes, macrophages, and PMNs. Microbial components, especially lipopolysaccharide (LPS), have the capacity to activate macrophages to synthesize and secrete a wide array of molecules including the cytokines interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-alpha), prostaglandins, especially PGE2, and hydrolytic enzymes. Likewise, bacterial substances activate T lymphocytes and they produce IL-1 and lymphotoxin (LT), a molecule having properties very similar to TNF-alpha. These cytokines manifest potent proinflammatory and catabolic activities, and play key roles in periodontal tissue breakdown. They induce fibroblasts and macrophages to produce neutral metalloproteinases such as procollagenase and prostromelysin, the serine proteinase urokinase-type plasminogen activator (u-PA), tissue inhibitor of metalloproteinase (TIMP), and prostaglandins, u-PA converts plasminogen into plasmin, which can activate neutral metalloproteinase proenzymes, and these enzymes degrade the extracellular matrix components. TIMP inactivates the active enzymes and thereby blocks further tissue degradation. Several amplification and suppression mechanisms are involved in the process. While LPS activates macrophages to produce IL-1, IL-1 is autostimulatory and can therefore amplify and perpetuate its own production. Interferon-gamma (INF-gamma) suppresses autostimulation, but it enhances LPS-induced IL-1 production. PGE2 exerts a control over the whole process by suppressing production of both IL-1 and TNF-alpha. Furthermore, the activated cells produce an IL-1 receptor antagonist that binds to the IL-1 receptor but does not induce the biologic consequences of IL-1 binding. Other cytokines such as transforming growth factor-beta (TGF-beta) suppress production of metalloproteinases and u-PA. Thus the progression and extent of tissue degradation is likely to be determined in major part by relative concentrations and half-life of IL-1, TNF-alpha, and related cytokines, competing molecules such as the IL-1 receptor antagonist, and suppressive molecules such as TGF-beta and PGE2. These molecules control levels of latent and active metalloproteinase and u-PA, and the availability and concentration of TIMP determines the extent and duration of degradative activity.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Oral Biology & Medicine
                Critical Reviews in Oral Biology & Medicine
                SAGE Publications
                1045-4411
                1544-1113
                December 2016
                December 2016
                : 9
                : 3
                : 248-266
                Article
                10.1177/10454411980090030101
                9715365
                cefcbb42-d458-4dd5-a380-195687431bca
                © 2016
                History

                Comments

                Comment on this article