4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-Functional Nanogels for Tumor Targeting and Redox-Sensitive Drug and siRNA Delivery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs. Moreover, nanoparticles were conjugated to a chemotherapeutic drug or to a pro-apoptotic siRNA through a glutathione sensitive spacer, in order to obtain a controlled release mechanism, specific for cancer cells. The drug efficiency was tested on tumor and healthy cells by flow cytometric analysis, confocal and epifluorescence microscopy and cytotoxicity assay; the siRNA effect was investigated by RNAi experiment; (3) Results: The data obtained showed that the use of NGs permits a faster cargo release in cancer cells, in response to high cytosolic glutathione level, also improving their efficacy; (4) Conclusion: The possibility of releasing biological molecules in a controlled way and to recognize a specific tumor target allows overcoming the typical limits of the classic cancer therapy.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione levels in human tumors.

          This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck, and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric, and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer.

            Prior studies suggested that nanoparticle drug delivery might improve the therapeutic response to anticancer drugs and allow the simultaneous monitoring of drug uptake by tumors. We employed modified PAMAM dendritic polymers <5 nm in diameter as carriers. Acetylated dendrimers were conjugated to folic acid as a targeting agent and then coupled to either methotrexate or tritium and either fluorescein or 6-carboxytetramethylrhodamine. These conjugates were injected i.v. into immunodeficient mice bearing human KB tumors that overexpress the folic acid receptor. In contrast to nontargeted polymer, folate-conjugated nanoparticles concentrated in the tumor and liver tissue over 4 days after administration. The tumor tissue localization of the folate-targeted polymer could be attenuated by prior i.v. injection of free folic acid. Confocal microscopy confirmed the internalization of the drug conjugates into the tumor cells. Targeting methotrexate increased its antitumor activity and markedly decreased its toxicity, allowing therapeutic responses not possible with a free drug.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisiting the method of cumulants for the analysis of dynamic light-scattering data.

              The method of cumulants is a standard technique used to analyze dynamic light-scattering data measured for polydisperse samples. These data, from an intensity-intensity autocorrelation function of the scattered light, can be described in terms of a distribution of decay rates. The method of cumulants provides information about the cumulants and the moments of this distribution. However, the method does not permit independent determination of the long-time baseline of the intensity correlation function and can lead to inconsistent results when different numbers of data points are included in the fit. The method is reformulated in terms of the moments about the mean to permit more robust and satisfactory fits. The different versions of the method are compared by analysis of the data for polydisperse-vesicle samples.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                23 November 2016
                November 2016
                : 21
                : 11
                : 1594
                Affiliations
                [1 ]Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Università degli Studi di Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; giorgia.adamo@ 123456unipa.it (G.A.); simona.campora@ 123456unipa.it (S.C.)
                [2 ]Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy; ngrimaldi@ 123456icmab.es (N.G.); mariaantonietta.sabatino@ 123456unipa.it (M.A.S.); clelia.dispenza@ 123456unipa.it (C.D.)
                [3 ]Consiglio Nazionale delle Ricerche (CNR)—Istituto di Biofisica (IBF) UOS Palermo, Via U. La Malfa 153, 90146 Palermo, Italy; donatella.bulone@ 123456pa.ibf.cnr.it
                [4 ]Consiglio Nazionale delle Ricerche (CNR)—Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy; bondi@ 123456pa.ismn.cnr.it
                [5 ]Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; mohamad@ 123456umd.edu
                Author notes
                [* ]Correspondence: giulio.ghersi@ 123456unipa.it ; Tel.: +39-091-23897409; Fax: +39-091-6577210
                Article
                molecules-21-01594
                10.3390/molecules21111594
                6274332
                27886088
                cf1f5ac9-45aa-4f91-957d-691c680b9c87
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 August 2016
                : 16 November 2016
                Categories
                Article

                pvp,nanogels,e-beam,folate-targeting,doxorubicin,sirna,gsh-responsive release

                Comments

                Comment on this article