12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      4D XCAT phantom for multimodality imaging research : 4D XCAT phantom for multimodality imaging research

      , , , ,
      Medical Physics
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          GATE: a simulation toolkit for PET and SPECT.

          Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            The NURBS Book

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Monte Carlo program for the simulation of scintillation camera characteristics.

              There is a need for mathematical modelling for the evaluation of important parameters for photon imaging systems. A Monte Carlo program which simulates medical imaging nuclear detectors has been developed. Different materials can be chosen for the detector, a cover and a phantom. Cylindrical, spherical, rectangular and more complex phantom and source shapes can be simulated. Photoelectric, incoherent, coherent interactions and pair production are simulated. Different detector parameters, e.g. the energy pulse-height distribution and pulse pile-up due to finite decay time of the scintillation light emission, can be calculated. An energy resolution of the system is simulated by convolving the energy imparted with an energy-dependent Gaussian function. An image matrix of the centroid of the events in the detector can be simulated. Simulation of different collimators permits studies of spatial resolution and sensitivity. Comparisons of our results with experimental data and other published results have shown good agreement. The usefulness of the Monte Carlo code for the accurately simulation of important parameters in scintillation camera systems, stationary as well as SPECT (single-photon emission computed tomography) systems, has been demonstrated.
                Bookmark

                Author and article information

                Journal
                Medical Physics
                Med. Phys.
                Wiley
                00942405
                September 2010
                August 24 2010
                August 24 2010
                : 37
                : 9
                : 4902-4915
                Article
                10.1118/1.3480985
                cf237eea-3e40-4914-a7f8-ae2a1d68a561
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article