0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Standardized Pre-clinical Surgical Animal Model Protocol to Investigate the Cellular and Molecular Mechanisms of Ischemic Flap Healing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Some of the most complex surgical interventions to treat trauma and cancer include the use of locoregional pedicled and free autologous tissue transfer flaps. While the techniques used for these reconstructive surgery procedures have improved over time, flap complications and even failure remain a significant clinical challenge. Animal models are useful in studying the pathophysiology of ischemic flaps, but when repeatability is a primary focus of a study, conventional in-vivo designs, where one randomized subset of animals serves as a treatment group while a second subset serves as a control, are at a disadvantage instigated by greater subject-to-subject variability. Our goal was to provide a step-by-step methodological protocol for creating an alternative standardized, more economical, and transferable pre-clinical animal research model of excisional full-thickness wound healing following a simulated autologous tissue transfer which includes the primary ischemia, reperfusion, and secondary ischemia events with the latter mimicking flap salvage procedure.

          Results

          Unlike in the most frequently used classical unilateral McFarlane’s caudally based dorsal random pattern skin flap model, in the herein described bilateral epigastric fasciocutaneous advancement flap (BEFAF) model, one flap heals under normal and a contralateral flap—under perturbed conditions or both flaps heal under conditions that vary by one within-subjects factor. We discuss the advantages and limitations of the proposed experimental approach and, as a part of model validation, provide the examples of its use in laboratory rat ( Rattus norvegicus) axial pattern flap healing studies.

          Conclusions

          This technically challenging but feasible reconstructive surgery model eliminates inter-subject variability, while concomitantly minimizing the number of animals needed to achieve adequate statistical power. BEFAFs may be used to investigate the spatiotemporal cellular and molecular responses to complex tissue injury, interventions simulating clinically relevant flap complications (e.g., vascular thrombosis) as well as prophylactic, therapeutic or surgical treatment (e.g., flap delay) strategies in the presence or absence of confounding risk factors (e.g., substance abuse, irradiation, diabetes) or favorable wound-healing promoting activities (e.g., exercise). Detailed visual instructions in BEFAF protocol may serve as an aid for teaching medical or academic researchers basic vascular microsurgery techniques that focus on precision, tremor management and magnification.

          Graphical Abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12575-023-00227-w.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current Mechanistic Concepts in Ischemia and Reperfusion Injury.

            Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell biology of ischemia/reperfusion injury.

              Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Edmund.Pribitkin@jefferson.edu
                Journal
                Biol Proced Online
                Biol Proced Online
                Biological Procedures Online
                BioMed Central (London )
                1480-9222
                17 January 2024
                17 January 2024
                2024
                : 26
                : 2
                Affiliations
                [1 ]Department of Otolaryngology – Head and Neck Surgery, Thomas Jefferson University, ( https://ror.org/00ysqcn41) 925 Chestnut St., 6Th floor, Philadelphia, PA 19107 USA
                [2 ]Present address: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, ( https://ror.org/047426m28) 405 N. Mathews Ave | M/C 251, Room 4357, Urbana, IL 61801 USA
                [3 ]Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, ( https://ror.org/00ysqcn41) 1020 Locust St, Room 527, Philadelphia, PA 19107 USA
                [4 ]GRID grid.265008.9, ISNI 0000 0001 2166 5843, Sidney Kimmel Medical College, ; 31st Floor, 1101 Market Street, Philadelphia, PA 19107 USA
                Article
                227
                10.1186/s12575-023-00227-w
                10792889
                38229030
                cf33441d-c680-4ad3-a66e-b1fa90921400
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 June 2023
                : 14 December 2023
                Categories
                Methodology
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Life sciences
                excisional wound healing,bilateral flap,pedicled flap,fasciocutaneous flap,superficial inferior epigastric vessels,axial pattern flap survival,primary ischemia,reperfusion injury,secondary ischemia,autologous tissue transfer

                Comments

                Comment on this article