28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from “curable” skin infections to only “manageable” pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria’s high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen’s phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Call of the wild: antibiotic resistance genes in natural environments.

          Antibiotic-resistant pathogens are profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood. The origins of antibiotic resistance in the environment is relevant to human health because of the increasing importance of zoonotic diseases as well as the need for predicting emerging resistant pathogens. This Review explores the presence and spread of antibiotic resistance in non-agricultural, non-clinical environments and demonstrates the need for more intensive investigation on this subject.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae.

            Mycobacterium abscessus infections tend to respond poorly to macrolide-based chemotherapy, even though the organisms appear to be susceptible to clarithromycin. Circumstantial evidence suggested that at least some M. abscessus isolates might be inducibly resistant to macrolides. Thus, the purpose of this study was to investigate the macrolide phenotype of M. abscessus clinical isolates. Inducible resistance to clarithromycin (MIC > 32 microg/ml) was found for 7 of 10 clinical isolates of M. abscessus previously considered susceptible; the remaining 3 isolates were deemed to be susceptible (MIC
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mycobacterium abscessus Complex Infections in Humans

              New treatments, rapid and inexpensive identification methods, and measures to contain nosocomial transmission and outbreaks are urgently needed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 September 2018
                2018
                : 9
                : 2179
                Affiliations
                [1] 1Institute of Medical Microbiology, University of Zurich , Zurich, Switzerland
                [2] 2National Center for Mycobacteria , Zurich, Switzerland
                Author notes

                Edited by: Thomas Dick, Rutgers, The State University of New Jersey, Newark, United States

                Reviewed by: Uday Suryan Ganapathy, Rutgers, The State University of New Jersey, Newark, United States; Juan Manuel Belardinelli, Colorado State University, United States

                *Correspondence: Peter Sander, psander@ 123456imm.uzh.ch

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02179
                6143652
                30258428
                cf9b42bc-8912-43ad-b895-eea2c9b38ebd
                Copyright © 2018 Luthra, Rominski and Sander.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 July 2018
                : 24 August 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 94, Pages: 13, Words: 0
                Categories
                Microbiology
                Review

                Microbiology & Virology
                non-tuberculous mycobacteria,mycobacterium abscessus,antibiotic,drug resistance,resistance genes,antibiotic-target-modifying enzymes,antibiotic-modifying enzymes

                Comments

                Comment on this article