4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomics-based neoantigen discovery can be enhanced by proteomic evidence, but there remains a lack of consensus on the performance of different quality control methods for variant peptide identification in proteogenomics. We propose to use the difference between accurately predicted and observed retention times for each peptide as a metric to evaluate different quality control methods. To this end, we develop AutoRT, a deep learning algorithm with high accuracy in retention time prediction. Analysis of three cancer data sets with a total of 287 tumor samples using different quality control strategies results in substantially different numbers of identified variant peptides and putative neoantigens. Our systematic evaluation, using the proposed retention time metric, provides insights and practical guidance on the selection of quality control strategies. We implement the recommended strategy in a computational workflow named NeoFlow to support proteogenomics-based neoantigen prioritization, enabling more sensitive discovery of putative neoantigens.

          Abstract

          Identifying mutation-derived neoantigens by proteogenomics requires robust strategies for quality control. Here, the authors propose peptide retention time as an evaluation metric for proteogenomics quality control methods, and develop a deep learning algorithm for accurate retention time prediction.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

          Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial

            Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              OptiType: precision HLA typing from next-generation sequencing data

              Motivation: The human leukocyte antigen (HLA) gene cluster plays a crucial role in adaptive immunity and is thus relevant in many biomedical applications. While next-generation sequencing data are often available for a patient, deducing the HLA genotype is difficult because of substantial sequence similarity within the cluster and exceptionally high variability of the loci. Established approaches, therefore, rely on specific HLA enrichment and sequencing techniques, coming at an additional cost and extra turnaround time. Result: We present OptiType, a novel HLA genotyping algorithm based on integer linear programming, capable of producing accurate predictions from NGS data not specifically enriched for the HLA cluster. We also present a comprehensive benchmark dataset consisting of RNA, exome and whole-genome sequencing data. OptiType significantly outperformed previously published in silico approaches with an overall accuracy of 97% enabling its use in a broad range of applications. Contact: szolek@informatik.uni-tuebingen.de Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                bing.zhang@bcm.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                9 April 2020
                9 April 2020
                2020
                : 11
                : 1759
                Affiliations
                [1 ]ISNI 0000 0001 2160 926X, GRID grid.39382.33, Lester and Sue Smith Breast Center, , Baylor College of Medicine, ; Houston, TX 77030 USA
                [2 ]ISNI 0000 0001 2160 926X, GRID grid.39382.33, Department of Molecular and Human Genetics, , Baylor College of Medicine, ; Houston, TX 77030 USA
                Author information
                http://orcid.org/0000-0003-2261-3150
                http://orcid.org/0000-0002-0810-2437
                http://orcid.org/0000-0002-6125-6662
                http://orcid.org/0000-0001-8676-2425
                Article
                15456
                10.1038/s41467-020-15456-w
                7145864
                32273506
                cfa41c46-dfb7-47ad-a273-cf50c03af6ae
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 July 2019
                : 10 March 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000054, U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI);
                Award ID: U24 CA210954
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100004917, Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas);
                Award ID: RR160027
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100001234, Robert and Janice McNair Foundation;
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                proteomics,cancer,machine learning,proteome informatics
                Uncategorized
                proteomics, cancer, machine learning, proteome informatics

                Comments

                Comment on this article