14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Concerted inhibition of NADP+-specific isocitrate dehydrogenase by oxalacetate and glyoxylate. I. Oxalomalate formation and stability, and nature of the enzyme inhibition.

      ,
      Biochimica et biophysica acta

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxalacetate and glyoxylate are each weak inhibitors of NADP+-specific isocitrate dehydrogenase (threo-DS-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42)9 Together, however, they act in a concerted manner and strongly inhibit the enzyme. The rates of formation and dissociation of the enzyme inhibitor complex, and the rate of formation and the stability of the aldol condensation product of oxalacetate and glyoxylate, oxalomalate, were examined. The data obtained do not support the often suggested possibility that oxalomalate, per se, formed non-enzymatically in isocitrate dehydrogenase assay mixtures containing oxalacetate and glyoxylate, is responsible for the observed inhibition of the enzyme. Rather, the data presented in this communication suggest that oxalacetate binds to the enzyme first, and that the subsequent binding of glyoxylate leads to the formation of a catalytically inactive enzyme-inhibitor complex.

          Related collections

          Author and article information

          Journal
          Biochim. Biophys. Acta
          Biochimica et biophysica acta
          0006-3002
          0006-3002
          Jul 08 1977
          : 483
          : 1
          Article
          18195
          cfc7ee46-a578-4a7b-96a0-2567721da488
          History

          Comments

          Comment on this article