5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Role of Matrix Gla Protein (MGP) in Vascular Calcification

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix Gla protein (MGP) is a vitamin K-dependent protein, which is synthesized in bone and many other mesenchymal cells, which is also highly expressed by vascular smooth muscle cells (VSMCs) and chondrocytes. Numerous studies have confirmed that MGP acts as a calcification-inhibitor although the mechanism of action is still not fully understood. The modulation of tissue calcification by MGP is potentially regulated in several ways including direct inhibition of calcium-phosphate precipitation, the formation of matrix vesicles (MVs), the formation of apoptotic bodies (ABs), and trans-differentiation of VSMCs. MGP occurs as four species, i.e. fully carboxylated (cMGP), under-carboxylated, i.e. poorly carboxylated (ucMGP), phosphorylated (pMGP), and non-phosphorylated (desphospho, dpMGP). ELISA methods are currently available that can detect the different species of MGP. The expression of the MGP gene can be regulated via various mechanisms that have the potential to become genomic biomarkers for the prediction of vascular calcification (VC) progression. VC is an established risk factor for cardiovascular disease and is particularly prevalent in those with chronic kidney disease (CKD). The specific action of MGP is not yet clearly understood but could be involved with the functional inhibition of BMP-2 and BMP-4, by blocking calcium crystal deposition and shielding the nidus from calcification.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD.

          Patients with ESRD have a high circulating calcium (Ca) x phosphate (P) product and develop extensive vascular calcification that may contribute to their high cardiovascular morbidity. However, the cellular mechanisms underlying vascular calcification in this context are poorly understood. In an in vitro model, elevated Ca or P induced human vascular smooth muscle cell (VSMC) calcification independently and synergistically, a process that was potently inhibited by serum. Calcification was initiated by release from living VSMC of membrane-bound matrix vesicles (MV) and also by apoptotic bodies from dying cells. Vesicles released by VSMC after prolonged exposure to Ca and P contained preformed basic calcium phosphate and calcified extensively. However, vesicles released in the presence of serum did not contain basic calcium phosphate, co-purified with the mineralization inhibitor fetuin-A and calcified minimally. Importantly, MV released under normal physiologic conditions did not calcify, and VSMC were also able to inhibit the spontaneous precipitation of Ca and P in solution. The potent mineralization inhibitor matrix Gla protein was found to be present in MV, and pretreatment of VSMC with warfarin markedly enhanced vesicle calcification. These data suggest that in the context of raised Ca and P, vascular calcification is a modifiable, cell-mediated process regulated by vesicle release. These vesicles contain mineralization inhibitors derived from VSMC and serum, and perturbation of the production or function of these inhibitors would lead to accelerated vascular calcification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular calcification: the killer of patients with chronic kidney disease.

            Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Vascular calcification is a common complication in CKD, and investigators have demonstrated that the extent and histoanatomic type of vascular calcification are predictors of subsequent vascular mortality. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in vascular calcification in patients with kidney disease, many questions remain unanswered. No longer can we accept the concept that vascular calcification in CKD is a passive process resulting from an elevated calcium-phosphate product. Rather, as a result of the metabolic insults of diabetes, dyslipidemia, oxidative stress, uremia, and hyperphosphatemia, "osteoblast-like" cells form in the vessel wall. These mineralizing cells as well as the recruitment of undifferentiated progenitors to the osteochondrocyte lineage play a critical role in the calcification process. Important transcription factors such as Msx 2, osterix, and RUNX2 are crucial in the programming of osteogenesis. Thus, the simultaneous increase in arterial osteochondrocytic programs and reduction in active cellular defense mechanisms creates the "perfect storm" of vascular calcification seen in ESRD. Innovative clinical studies addressing the combined use of inhibitors that work on vascular calcification through distinct molecular mechanisms, such as fetuin-A, osteopontin, and bone morphogenic protein 7, among others, will be necessary to reduce significantly the accrual of vascular calcifications and cardiovascular mortality in kidney disease. In addition, the roles of oxidative stress and inflammation on the fate of smooth muscle vascular cells and their function deserve further translational investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis.

              Vascular calcification is associated with increased morbidity and mortality in stage V chronic kidney disease, yet its early pathogenesis and initiating mechanisms in vivo remain poorly understood. To address this, we quantified the calcium (Ca) load in arteries from children (10 predialysis, 24 dialysis) and correlated it with clinical, biochemical, and vascular measures. Vessel Ca load was significantly elevated in both predialysis and dialysis and was correlated with the patients' mean serum Ca x phosphate product. However, only dialysis patients showed increased carotid intima-media thickness and increased aortic stiffness, and calcification on computed tomography was present in only the 2 patients with the highest Ca loads. Importantly, predialysis vessels appeared histologically intact, whereas dialysis vessels exhibited evidence of extensive vascular smooth muscle cell (VSMC) loss owing to apoptosis. Dialysis vessels also showed increased alkaline phosphatase activity and Runx2 and osterix expression, indicative of VSMC osteogenic transformation. Deposition of the vesicle membrane marker annexin VI and vesicle component mineralization inhibitors fetuin-A and matrix Gla-protein increased in dialysis vessels and preceded von Kossa positive overt calcification. Electron microscopy showed hydroxyapatite nanocrystals within vesicles released from damaged/dead VSMCs, indicative of their role in initiating calcification. Taken together, this study shows that Ca accumulation begins predialysis, but it is the induction of VSMC apoptosis in dialysis that is the key event in disabling VSMC defense mechanisms and leading to overt calcification, eventually with clinically detectable vascular damage. Thus the identification of factors that lead to VSMC death in dialysis will be of prime importance in preventing vascular calcification.
                Bookmark

                Author and article information

                Journal
                Current Medicinal Chemistry
                CMC
                Bentham Science Publishers Ltd.
                09298673
                March 27 2020
                March 27 2020
                : 27
                : 10
                : 1647-1660
                Affiliations
                [1 ]Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
                [2 ]Department of Medicine, Solleftea Hospital, Solleftea, Sweden
                [3 ]Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
                [4 ]Human Nutristasis Unit, Viapath, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
                [5 ]Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
                [6 ]Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
                Article
                10.2174/0929867325666180716104159
                30009696
                cfe59369-3a83-4a23-9273-65e160274388
                © 2020
                History

                Comments

                Comment on this article