42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thyroid Hormone Regulation of Adult Intestinal Stem Cell Development: Mechanisms and Evolutionary Conservations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors .

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          The nuclear receptor superfamily: the second decade.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological and molecular basis of thyroid hormone action.

            P M Yen (2001)
            Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organizing cell renewal in the intestine: stem cells, signals and combinatorial control.

              The lining of the intestine is renewed at an extraordinary rate, outpacing all other tissues in the vertebrate body. The renewal process is neatly organized in space, so that the whole production line, from the ever-youthful stem cells to their dying, terminally differentiated progeny, is laid out to view in histological sections. A flurry of recent papers has clarified the key regulatory signals and brought us to the point where we can begin to give a coherent account, for at least one tissue, of how these signals collaborate to organize the architecture and behaviour of a stem-cell system.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2012
                23 October 2012
                : 8
                : 8
                : 1217-1224
                Affiliations
                1. Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan 430072, P.R. China.
                2. Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, Maryland, 20892.
                Author notes
                ✉ Corresponding author: Yun-Bo Shi, shi@ 123456helix.nih.gov ; or Guihong Sun, ghsunlab@ 123456whu.edu.cn .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv08p1217
                10.7150/ijbs.5109
                3491429
                23136549
                d01033c6-84cf-4a52-b660-340d09add250
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 27 August 2012
                : 17 September 2012
                Categories
                Review

                Life sciences
                thyroid hormone receptor,histone methyltransferase,adult organ-specific stem cell,transcriptional coactivator,dedifferentiation, xenopus laevis, metamorphosis.

                Comments

                Comment on this article