10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The E3 ubiquitin ligase Triad1 influences development of Mll-Ell-induced acute myeloid leukemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromosomal translocations involving the MLL1 gene characterize a poor prognosis subset of acute myeloid leukemia (AML), referred to as 11q23-AML. Transcription of the HOXA9 and HOXA10 genes is enhanced in hematopoietic stem and progenitor cells in these leukemias. We previously found the ARIH2 gene was repressed by HoxA9 in myeloid progenitors, but activated by HoxA10 during granulopoiesis. ARIH2 encodes the Triad1 protein, an anti-proliferative E3 ubiquitin ligase. In the current study, we investigate the role of Triad1 in leukemogenesis induced by an MLL1 fusion protein (Mll-Ell). We found Mll-Ell increased expression of HoxA9, HoxA10, and Triad1 because HoxA9 represses only one of two ARIH2 cis elements that are activated by HoxA10. Although Triad1 antagonized the generally pro-proliferative effects of the Mll-Ell oncoprotein, we found blocking HoxA9 and HoxA10 phosphorylation shifted the balance to ARIH2 repression in Mll-Ell + cells. We investigated the significance of these in vitro results in a murine bone marrow transplant model. We found Triad1 knockdown significantly shortened the latency to development of AML in mice transplanted with Mll-Ell-transduced bone marrow. And, Triad1 expression fell during the prolonged AML latency period in mice transplanted with bone marrow expressing Mll-Ell alone. Our studies identify Triad1 as a leukemia suppressor in 11q23-AML. This suggests defining relevant Triad1 substrates may indicate novel therapeutic targets in this disease.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.

          Acute lymphoblastic leukemias carrying a chromosomal translocation involving the mixed-lineage leukemia gene (MLL, ALL1, HRX) have a particularly poor prognosis. Here we show that they have a characteristic, highly distinct gene expression profile that is consistent with an early hematopoietic progenitor expressing select multilineage markers and individual HOX genes. Clustering algorithms reveal that lymphoblastic leukemias with MLL translocations can clearly be separated from conventional acute lymphoblastic and acute myelogenous leukemias. We propose that they constitute a distinct disease, denoted here as MLL, and show that the differences in gene expression are robust enough to classify leukemias correctly as MLL, acute lymphoblastic leukemia or acute myelogenous leukemia. Establishing that MLL is a unique entity is critical, as it mandates the examination of selectively expressed genes for urgently needed molecular targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.

            We report here that individuals with Noonan syndrome and juvenile myelomonocytic leukemia (JMML) have germline mutations in PTPN11 and that somatic mutations in PTPN11 account for 34% of non-syndromic JMML. Furthermore, we found mutations in PTPN11 in a small percentage of individuals with myelodysplastic syndrome (MDS) and de novo acute myeloid leukemia (AML). Functional analyses documented that the two most common mutations in PTPN11 associated with JMML caused a gain of function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of functional cooperative mutations of SETD2 in human acute leukemia.

              Acute leukemia characterized by chromosomal rearrangements requires additional molecular disruptions to develop into full-blown malignancy, yet the cooperative mechanisms remain elusive. Using whole-genome sequencing of a pair of monozygotic twins discordant for MLL (also called KMT2A) gene-rearranged leukemia, we identified a transforming MLL-NRIP3 fusion gene and biallelic mutations in SETD2 (encoding a histone H3K36 methyltransferase). Moreover, loss-of-function point mutations in SETD2 were recurrent (6.2%) in 241 patients with acute leukemia and were associated with multiple major chromosomal aberrations. We observed a global loss of H3K36 trimethylation (H3K36me3) in leukemic blasts with mutations in SETD2. In the presence of a genetic lesion, downregulation of SETD2 contributed to both initiation and progression during leukemia development by promoting the self-renewal potential of leukemia stem cells. Therefore, our study provides compelling evidence for SETD2 as a new tumor suppressor. Disruption of the SETD2-H3K36me3 pathway is a distinct epigenetic mechanism for leukemia development.
                Bookmark

                Author and article information

                Contributors
                +312 503 3208 , e-eklund@northwestern.edu
                Journal
                Oncogene
                Oncogene
                Oncogene
                Nature Publishing Group UK (London )
                0950-9232
                1476-5594
                20 February 2018
                20 February 2018
                2018
                : 37
                : 19
                : 2532-2544
                Affiliations
                [1 ]ISNI 0000 0001 2299 3507, GRID grid.16753.36, Feinberg School of Medicine, , Northwestern University, ; Chicago, IL USA
                [2 ]Jesse Brown Veteran’s Administration Medical Center, Chicago, IL USA
                Article
                131
                10.1038/s41388-018-0131-5
                5945580
                29459712
                d02b24eb-10c8-41d9-8193-120f7c7335c6
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 7 May 2017
                : 22 October 2017
                : 5 December 2017
                Categories
                Article
                Custom metadata
                © Macmillan Publishers Limited, part of Springer Nature 2018

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article