14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function.

          Methods

          We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization.

          Results

          GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies.

          Conclusions

          Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity.

          Highlights

          • DMH GLP-1R stimulation acutely increases BAT thermogenesis.

          • DMH GLP-1R mRNA knockdown decreases EE and BAT thermogenesis.

          • DMH GLP-1R mRNA knockdown impairs lipid and glucose metabolism.

          • Reduced DMH GLP-1R signaling blunts the anorexigenic responses to Ex-4.

          • DMH GLP-1R signaling indirectly regulates NPY gene expression.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss.

          Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system.

            Glucagon-like peptide-1 (GLP-1) is derived from the peptide precursor pre-pro-glucagon (PPG) by enzymatic cleavage and acts via its receptor, glucagon-like peptide-1 receptor (GLP-1R). By using riboprobes complementary to PPG and GLP-1R, we described the distribution of PPG and GLP-1R messenger RNAs (mRNAs) in the central nervous system of the rat. PPG mRNA-expressing perikarya were restricted to the nucleus of the solitary tact or to the dorsal and ventral medulla and olfactory bulb. GLP-1R mRNA was detected in numerous brain regions, including the mitral cell layer of the olfactory bulb; temporal cortex; caudal hippocampus; lateral septum; amygdala; nucleus accumbens; ventral pallium; nucleus basalis Meynert; bed nucleus of the stria terminalis; preoptic area; paraventricular, supraoptic, arcuate, and dorsomedial nuclei of the hypothalamus; lateral habenula; zona incerta; substantia innominata; posterior thalamic nuclei; ventral tegmental area; dorsal tegmental, posterodorsal tegmental, and interpeduncular nuclei; substantia nigra, central gray; raphe nuclei; parabrachial nuclei; locus ceruleus, nucleus of the solitary tract; area postrema; dorsal nucleus of the vagus; lateral reticular nucleus; and spinal cord. These studies, in addition to describing the sites of GLP-1 and GLP-1R synthesis, suggest that the efferent connections from the nucleus of the solitary tract are more widespread than previously reported. Although the current role of GLP-1 in regulating neuronal physiology is not known, these studies provide detailed information about the sites of GLP-1 synthesis and potential sites of action, an important first step in evaluating the function of GLP-1 in the brain. The widespread distribution of GLP-1R mRNA-containing cells strongly suggests that GLP-1 not only functions as a satiety factor but also acts as a neurotransmitter or neuromodulator in anatomically and functionally distinct areas of the central nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain

              Objective Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question. Methods Mice expressing Cre-recombinase under the Glp1r promoter were crossed with either a ROSA26 eYFP or tdRFP reporter strain to identify GLP-1R expressing cells. Patch-clamp recordings were performed on tdRFP-positive neurons in acute coronal brain slices from adult mice and selective targeting of GLP-1R cells in vivo was achieved using viral gene delivery. Results Large numbers of eYFP or tdRFP immunoreactive cells were found in the circumventricular organs, amygdala, hypothalamic nuclei and the ventrolateral medulla. Smaller numbers were observed in the nucleus of the solitary tract and the thalamic paraventricular nucleus. However, tdRFP positive neurons were also found in areas without preproglucagon-neuronal projections like hippocampus and cortex. GLP-1R cells were not immunoreactive for GFAP or parvalbumin although some were catecholaminergic. GLP-1R expression was confirmed in whole-cell recordings from BNST, hippocampus and PVN, where 100 nM GLP-1 elicited a reversible inward current or depolarisation. Additionally, a unilateral stereotaxic injection of a cre-dependent AAV into the PVN demonstrated that tdRFP-positive cells express cre-recombinase facilitating virally-mediated eYFP expression. Conclusions This study is a comprehensive description and phenotypic analysis of GLP-1R expression in the mouse CNS. We demonstrate the power of combining the GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Metab
                Mol Metab
                Molecular Metabolism
                Elsevier
                2212-8778
                21 March 2018
                May 2018
                21 March 2018
                : 11
                : 33-46
                Affiliations
                [1 ]Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
                [2 ]Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
                [3 ]Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
                Author notes
                []Corresponding author. Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland. shin-lee@ 123456ethz.ch
                [4]

                Co-senior authors.

                Article
                S2212-8778(18)30143-1
                10.1016/j.molmet.2018.03.008
                6001878
                29650350
                d02f7525-1bb5-4404-9f62-167425ff50f2
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 February 2018
                : 9 March 2018
                : 14 March 2018
                Categories
                Original Article

                neuropeptide,hypothalamus,sympathetic nerve,adipose tissue,obesity

                Comments

                Comment on this article