0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis and Structure−Activity Studies onN-[5-(1H-Imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methanesulfonamide, an Imidazole-Containing α1A-Adrenoceptor Agonist1

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structure-activity studies were performed on the alpha(1A)-adrenoceptor (AR) selective agonist N-[5-(1H-imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methanesulfonamide (4). Compounds were evaluated for binding activity at the alpha(1A), alpha(1b), alpha(1d), alpha(2a), and alpha(2B) subtypes. Functional activity in tissues containing the alpha(1A) (rabbit urethra), alpha(1B) (rat spleen), alpha(1D) (rat aorta), and alpha(2A) (rat prostatic vas deferens) was also evaluated. A dog in vivo model simultaneously measuring intraurethral pressure (IUP) and mean arterial pressure (MAP) was used to assess the uroselectivity of the compounds. Many of the compounds that were highly selective in vitro for the alpha(1A)-AR subtype were also more uroselective in vivo for increasing IUP over MAP than the nonselective alpha(1)-agonists phenylpropanolamine (PPA) (1) and ST-1059 (2, the active metabolite of midodrine), supporting the hypothesis that greater alpha(1A) selectivity would reduce cardiovascular side effects. However, the data also support a prominent role of the alpha(1A)-AR subtype in the control of MAP.

          Related collections

          Author and article information

          Journal
          Journal of Medicinal Chemistry
          J. Med. Chem.
          American Chemical Society (ACS)
          0022-2623
          1520-4804
          June 2004
          June 2004
          : 47
          : 12
          : 3220-3235
          Article
          10.1021/jm030551a
          15163201
          d047b8a3-fd55-4288-a227-bf761d8475d6
          © 2004
          History

          Comments

          Comment on this article