7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanopore DNA sequencing is limited by low base calling accuracy. Improved base-calling accuracy has so far relied on specialized base-calling algorithms, different nanopores and motor enzymes, or biochemical methods to re-read DNA molecules. Two primary error modes hamper sequencing accuracy: enzyme mis-steps and sequences with indistinguishable signals. We vary the driving voltage across an MspA nanopore between 100 to 200 mV with a frequency of 200 Hz, changing how the DNA strand moves through the nanopore. As a DNA helicase moves the DNA through the nanopore in discrete steps, the variable voltage positions the DNA continuously between these steps. The resulting electronic signal can be analysed to overcome the primary error modes in base-calling. Single-passage de novo base-calling accuracy in our device increases from 62.7 ± 0.5% with a constant driving voltage to 79.3 ± 0.3% with a variable driving voltage. Our variable-voltage sequencing mode is complementary to other advances in nanopore sequencing and is amenable to incorporation into other enzyme-actuated nanopore sequencing devices.

          Editor’s summary

          The accuracy of nanopore DNA sequencing is substantially improved by application of a variable-voltage sequencing mode.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The potential and challenges of nanopore sequencing.

          A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase.

            Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of individual polynucleotide molecules using a membrane channel.

              We show that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane. Because the channel diameter can accommodate only a single strand of RNA or DNA, each polymer traverses the membrane as an extended chain that partially blocks the channel. The passage of each molecule is detected as a transient decrease of ionic current whose duration is proportional to polymer length. Channel blockades can therefore be used to measure polynucleotide length. With further improvements, the method could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.
                Bookmark

                Author and article information

                Journal
                9604648
                20305
                Nat Biotechnol
                Nat. Biotechnol.
                Nature biotechnology
                1087-0156
                1546-1696
                13 June 2019
                22 April 2019
                June 2019
                22 October 2019
                : 37
                : 6
                : 651-656
                Affiliations
                Department of Physics, University of Washington, Seattle, WA, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                NIHMS1523755
                10.1038/s41587-019-0096-0
                6658736
                31011178
                d0dee360-28e7-41e4-8467-5a430672b734

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article