17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.

          The CRISPR-Cas9 RNA-guided DNA endonuclease has contributed to an explosion of advances in the life sciences that have grown from the ability to edit genomes within living cells. In this Review, we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications. We describe recent developments that extend the generality, DNA specificity, product selectivity, and fundamental capabilities of natural CRISPR systems, and we highlight some of the remarkable advancements in basic research, biotechnology, and therapeutics science that these developments have facilitated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.

            The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.

              CRISPR-Cas9 systems provide a platform for high efficiency genome editing that are enabling innovative applications of mammalian cell engineering. However, the delivery of Cas9 and synthesis of guide RNA (gRNA) remain as steps that can limit overall efficiency and ease of use. Here we describe methods for rapid synthesis of gRNA and for delivery of Cas9 protein/gRNA ribonucleoprotein complexes (Cas9 RNPs) into a variety of mammalian cells through liposome-mediated transfection or electroporation. Using these methods, we report nuclease-mediated indel rates of up to 94% in Jurkat T cells and 87% in induced pluripotent stem cells (iPSC) for a single target. When we used this approach for multigene targeting in Jurkat cells we found that two-locus and three-locus indels were achieved in approximately 93% and 65% of the resulting isolated cell lines, respectively. Further, we found that the off-target cleavage rate is reduced using Cas9 protein when compared to plasmid DNA transfection. Taken together, we present a streamlined cell engineering workflow that enables gRNA design to analysis of edited cells in as little as four days and results in highly efficient genome modulation in hard-to-transfect cells. The reagent preparation and delivery to cells is amenable to high throughput, multiplexed genome-wide cell engineering.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                September 11 2019
                September 11 2019
                Affiliations
                [1 ]From the Department of Hematopoietic Stem Cell Transplantation (L. Xu, J.W., T.L., B.Z., L.H., H.N., Y.Z., H.C.) and the Cell and Gene Therapy Center (B.Z., L.Z., L.H., H.C.), 307 Hospital of the People’s Liberation Army, the Fifth Medical Center of the People’s Liberation Army General Hospital, the Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, and...
                Article
                10.1056/NEJMoa1817426
                31509667
                d0f10b71-b7bc-4e88-bad1-5b653069a06a
                © 2019

                http://www.nejmgroup.org/legal/terms-of-use.htm

                History

                Comments

                Comment on this article