43
views
0
recommends
+1 Recommend
2 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Data report: X-ray fluorescence studies of Site U1457 sediments, Laxmi Basin, Arabian Sea

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bulk sediment chemistry was measured at 2 cm resolution along cores from International Ocean Discovery Program (IODP) Site U1457 using the X-ray fluorescence (XRF) core scanner at the IODP Gulf Coast Repository. The Pleistocene splice section assembled from Holes U1457A and U1457B was scanned in its entirety, and nearly continuous sediment bulk chemistry profiles were constructed to a depth of 125 m core composite depth below seafloor (CCSF). Some sections of Hole U1457C were also scanned: (1) an upper Miocene hemipelagic section and (2) a 30 m lower Paleocene section directly overlying basalt. In the Pleistocene spliced sections, 2 cm spacing represents a sampling resolution of 150–300 y, whereas in the upper Miocene section this spacing represents about 500 y between samples. We report data and acquisition conditions for major and many minor elements. We find large variability in CaCO3 content in the Pleistocene section, from around 14 to 89 wt%. We used discrete shipboard CaCO3 measurements to calibrate the XRF Ca data. CaCO3 has cyclic variability and correlates with light sediment colors. Variation in aluminosilicate elements is largely caused by changes in dilution by CaCO3. The lower part of the spliced section, presumably representing distal Indus Fan deposits, has a distinctive but more uniform composition than the upper part.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          The composition of the continental crust

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins.

              Proxies for past seawater chemistry, such as Mg/Ca and Sr/Ca ratios, provide a record of the dynamic exchanges of elements between the solid Earth, the atmosphere, and the hydrosphere and the evolving influence of life. We estimated past oceanic Mg/Ca and Sr/Ca ratios from suites of 1.6- to 170-million-year-old calcium carbonate veins that had precipitated from seawater-derived fluids in ocean ridge flank basalts. Our data indicate that before the Neogene, oceanic Mg/Ca and Sr/Ca ratios were lower than in the modern ocean. Decreased ocean spreading since the Cretaceous and the resulting slow reduction in ocean crustal hydrothermal exchange throughout the early Tertiary may explain the recent rise in these ratios.
                Bookmark

                Author and article information

                Journal
                10.14379/iodp.proc.355.2016
                Proceedings of the International Ocean Discovery Program
                International Ocean Discovery Program
                2377-3189
                11 December 2018
                Article
                10.14379/iodp.proc.355.203.2018
                d0f576f3-4122-4940-81d0-95735b78a630

                This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History

                Earth & Environmental sciences,Oceanography & Hydrology,Geophysics,Chemistry,Geosciences

                Comments

                Comment on this article