6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5′-untranslated region (5′UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5′-end-independent initiation of translation by a different mechanism. Picornavirus 5′UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Redefining the invertebrate RNA virosphere

          Current knowledge of RNA virus biodiversity is both biased and fragmentary, reflecting a focus on culturable or disease-causing agents. Here we profile the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and report the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. The identified viruses fill major gaps in the RNA virus phylogeny and reveal an evolutionary history that is characterized by both host switching and co-divergence. The invertebrate virome also reveals remarkable genomic flexibility that includes frequent recombination, lateral gene transfer among viruses and hosts, gene gain and loss, and complex genomic rearrangements. Together, these data present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why do RNA viruses recombine?

            Key Points RNA viruses are able to undergo two forms of recombination: RNA recombination, which (in principle) can occur in any type of RNA virus, and reassortment, which is restricted to those viruses with segmented genomes. Rates of RNA recombination vary markedly among RNA viruses. Some viruses, particularly those with negative-sense single-stranded genomes, exhibit such low rates of recombination that they are effectively clonal. By contrast, some positive-sense single-stranded RNA viruses and some retroviruses such as HIV exhibit high rates of recombination that can exceed the rates of mutation when measured per nucleotide. Although recombination is often argued to represent a form of sexual reproduction, there is little evidence that recombination in RNA viruses evolved as a way of creating advantageous genotypes or removing deleterious mutations. In particular, there is no association between recombination frequency and the burden of a deleterious mutation. Similarly, there is little evidence that recombination could have been selected as a form of genetic repair. The strongest association for rates of recombination in RNA viruses is with genome structure. Hence, negative-sense single-stranded RNA viruses may recombine at low rates because of the restrictive association of genomic RNA in a ribonucleoprotein complex, as well as a lack of substrates for template switching, whereas some retroviruses recombine rapidly because their virions contain two genome copies and template switching between these copies is an inevitable part of the viral replication cycle. We therefore hypothesize that recombination in RNA viruses is a mechanistic by-product of the processivity of the viral polymerase that is used in replication, and that it varies with genome structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces.

              Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                04 June 2020
                June 2020
                : 12
                : 6
                : 612
                Affiliations
                Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; yani.arhab@ 123456downstate.edu (Y.A.); alexander.bulakhov@ 123456downstate.edu (A.G.B.); tatyana.pestova@ 123456downstate.edu (T.V.P.)
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-6165-3203
                Article
                viruses-12-00612
                10.3390/v12060612
                7354566
                32512856
                d107c4dd-1583-46f0-9420-5e0e2b6da891
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 May 2020
                : 02 June 2020
                Categories
                Review

                Microbiology & Virology
                ires,flavivirus,horizontal gene transfer,hepacivirus,pegivirus,pestivirus,picornavirus,recombination,translation

                Comments

                Comment on this article