21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Base editing with a Cpf1–cytidine deaminase fusion

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions

          Base editing is a recently developed approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide changes in the DNA of living cells without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions 1 . Here we report the development of five new C→T (or G→A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5-fold. Additionally, we engineered new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to as little as 1 to 2 nucleotides, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency, thereby doubling the number of disease-associated target Cs that can be corrected preferentially over nearby non-target Cs. Collectively, these developments substantially increase the targeting scope of base editing and establish the modular nature of base editors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Precise base editing in rice, wheat and maize with a Cas9- cytidine deaminase fusion

            Single DNA base pairs are edited in wheat, rice and maize using a Cas9 nickase fusion protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.

              Programmable clustered regularly interspaced short palindromic repeats (CRISPR) Cpf1 endonucleases are single-RNA-guided (crRNA) enzymes that recognize thymidine-rich protospacer-adjacent motif (PAM) sequences and produce cohesive double-stranded breaks (DSBs). Genome editing with CRISPR-Cpf1 endonucleases could provide an alternative to CRISPR-Cas9 endonucleases, but the determinants of targeting specificity are not well understood. Using mismatched crRNAs we found that Cpf1 could tolerate single or double mismatches in the 3' PAM-distal region, but not in the 5' PAM-proximal region. Genome-wide analysis of cleavage sites in vitro for eight Cpf1 nucleases using Digenome-seq revealed that there were 6 (LbCpf1) and 12 (AsCpf1) cleavage sites per crRNA in the human genome, fewer than are present for Cas9 nucleases (>90). Most Cpf1 off-target cleavage sites did not produce mutations in cells. We found mismatches in either the 3' PAM-distal region or in the PAM sequence of 12 off-target sites that were validated in vivo. Off-target effects were completely abrogated by using preassembled, recombinant Cpf1 ribonucleoproteins.
                Bookmark

                Author and article information

                Journal
                Nature Biotechnology
                Nat Biotechnol
                Springer Nature
                1087-0156
                1546-1696
                March 19 2018
                March 19 2018
                :
                :
                Article
                10.1038/nbt.4102
                29553573
                d161dc9b-3249-4d31-a558-ccea2bd84299
                © 2018
                History

                Comments

                Comment on this article