69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Parkinson's disease (PD) is a multifactorial disease where environmental factors act on genetically predisposed individuals. Although only 5% of PD manifestations are associated with specific mutations, majority of PD cases are of idiopathic origin, where environment plays a prominent role. Concurrent exposure to Paraquat (PQ) and Maneb (MB) in rural workers increases the risk for PD and exposure of adult mice to MB/PQ results in dopamine fiber loss and decreased locomotor activity. While PD is characterized by neuronal loss in the substantia nigra, we previously showed that accumulation of α-synuclein in the limbic system contributes to neurodegeneration by interfering with adult neurogenesis.

          Results

          We investigated the effect of pesticides on adult hippocampal neurogenesis in two transgenic models: Line 61, expressing the human wild type SNCA gene and Line LRRK2(G2019S), expressing the human LRRK2 gene with the mutation G2019S. Combined exposure to MB/PQ resulted in significant reduction of neuronal precursors and proliferating cells in non-transgenic animals, and this effect was increased in transgenic mice, in particular for Line 61, suggesting that α-synuclein accumulation and environmental toxins have a synergistic effect. We further investigated the transcription of 84 genes with direct function on neurogenesis. Overexpresion of α-synuclein resulted in the downregulation of 12% of target genes, most of which were functionally related to cell differentiation, while LRRK2 mutation had a minor impact on gene expression. MB/PQ also affected transcription in non-transgenic backgrounds, but when transgenic mice were exposed to the pesticides, profound alterations in gene expression affecting 27% of the studied targets were observed in both transgenic lines. Gene enrichment analysis showed that 1:3 of those genes were under the regulation of FoxF2 and FoxO3A, suggesting a primary role of these proteins in the response to genetic and environmental cues.

          Conclusions

          We report that adult neurogenesis is highly susceptible to multiple “risk factors” for PD, including α-synuclein accumulation, LRRK2 G2019 mutation and exposure to environmental toxins. We identified specific groups of genes that are responsive to each stressor, while uncovering a novel function for Fox transcription factors in PD.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

          Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.

            The subventricular zone (SVZ) is a principal source of adult neural stem cells in the rodent brain, generating thousands of olfactory bulb neurons every day. If the adult human brain contains a comparable germinal region, this could have considerable implications for future neuroregenerative therapy. Stem cells have been isolated from the human brain, but the identity, organization and function of adult neural stem cells in the human SVZ are unknown. Here we describe a ribbon of SVZ astrocytes lining the lateral ventricles of the adult human brain that proliferate in vivo and behave as multipotent progenitor cells in vitro. This astrocytic ribbon has not been observed in other vertebrates studied. Unexpectedly, we find no evidence of chains of migrating neuroblasts in the SVZ or in the pathway to the olfactory bulb. Our work identifies SVZ astrocytes as neural stem cells in a niche of unique organization in the adult human brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters.

              Accumulation of alpha-synuclein has been associated with neurodegenerative disorders, such as Lewy body disease and multiple system atrophy. We previously showed that expression of wild-type human alpha-synuclein in transgenic mice results in motor and dopaminergic deficits associated with inclusion formation. To determine whether different levels of human alpha-synuclein expression from distinct promoters might result in neuropathology mimicking other synucleopathies, we compared patterns of human alpha-synuclein accumulation in the brains of transgenic mice expressing this molecule from the murine Thy-1 and platelet-derived growth factor (PDGF) promoters. In murine Thy-1-human alpha-synuclein transgenic mice, this protein accumulated in synapses and neurons throughout the brain, including the thalamus, basal ganglia, substantia nigra, and brainstem. Expression of human alpha-synuclein from the PDGF promoter resulted in accumulation in synapses of the neocortex, limbic system, and olfactory regions as well as formation of inclusion bodies in neurons in deeper layers of the neocortex. Furthermore, one of the intermediate expressor lines (line M) displayed human alpha-synuclein expression in glial cells mimicking some features of multiple system atrophy. These results show a more widespread accumulation of human alpha-synuclein in transgenic mouse brains. Taken together, these studies support the contention that human alpha-synuclein expression in transgenic mice might mimic some neuropathological alterations observed in Lewy body disease and other synucleopathies, such as multiple system atrophy. Copyright 2002 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Mol Neurodegener
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central
                1750-1326
                2012
                28 September 2012
                : 7
                : 49
                Affiliations
                [1 ]Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344, La Jolla, CA, 92093-0624, USA
                [2 ]Department of Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0624, USA
                [3 ]Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Tokyo, 183-8526, Japan
                Article
                1750-1326-7-49
                10.1186/1750-1326-7-49
                3502617
                23017109
                d198839e-42aa-4ec3-86d9-1274903ecf3d
                Copyright ©2012 Desplats et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 May 2012
                : 24 September 2012
                Categories
                Research Article

                Neurosciences
                adult neurogenesis,paraquat,environmental exposure,parkinson’s disease,gene x environment interactions,pesticides,maneb,gene expression

                Comments

                Comment on this article