15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Shivering thermogenesis in humans: Origin, contribution and metabolic requirement

      1 , 2
      Temperature
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d12891339e176">As endotherms, humans exposed to a compensable cold environment rely on an increase in thermogenic rate to counteract heat lost to the environment, thereby maintaining a stable core temperature. This review focuses primarily on the most important contributor of heat production in cold-exposed adult humans, shivering skeletal muscles. Specifically, it presents current understanding on (1) the origins of shivering, (2) the contribution of shivering to total heat production and (3) the metabolic requirements of shivering. Although shivering had commonly been measured as a metabolic outcome measure, considerable research is still needed to clearly identify the neuroanatomical structures and circuits that initiate and modulate shivering and drives the shivering patterns (continuous and burst shivering). One thing is clear, the thermogenic rate in humans can be maintained despite significant inter-individual differences in the thermogenic contribution of shivering, the muscles recruited in shivering, the burst shivering rate and the metabolic substrates used to support shivering. It has also become evident that the variability in burst shivering rate between individuals, despite not influencing heat production, does play a key role in orchestrating metabolic fuel selection in the cold. In addition, advances in our understanding of the thermogenic role of brown adipose tissue have been able to explain, at least in part, the large inter-individual differences in the contribution of shivering to total heat production. Whether these differences in the thermogenic role of shivering have any bearing on cold endurance and survival remains to be established. Despite the available research describing the relative thermogenic importance of shivering skeletal muscles in humans, the advancement in our understanding of how shivering is initiated and modulated is needed. Such research is critical to consider strategies to either reduce its role to improve occupational performance or exploit its metabolic potential for clinical purposes. </p>

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans.

          Brown adipose tissue (BAT) is vital for proper thermogenesis during cold exposure in rodents, but until recently its presence in adult humans and its contribution to human metabolism were thought to be minimal or insignificant. Recent studies using PET with 18F-fluorodeoxyglucose (18FDG) have shown the presence of BAT in adult humans. However, whether BAT contributes to cold-induced nonshivering thermogenesis in humans has not been proven. Using PET with 11C-acetate, 18FDG, and 18F-fluoro-thiaheptadecanoic acid (18FTHA), a fatty acid tracer, we have quantified BAT oxidative metabolism and glucose and nonesterified fatty acid (NEFA) turnover in 6 healthy men under controlled cold exposure conditions. All subjects displayed substantial NEFA and glucose uptake upon cold exposure. Furthermore, we demonstrated cold-induced activation of oxidative metabolism in BAT, but not in adjoining skeletal muscles and subcutaneous adipose tissue. This activation was associated with an increase in total energy expenditure. We found an inverse relationship between BAT activity and shivering. We also observed an increase in BAT radio density upon cold exposure, indicating reduced BAT triglyceride content. In sum, our study provides evidence that BAT acts as a nonshivering thermogenesis effector in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Central circuitries for body temperature regulation and fever.

            Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans

              Context: Recent studies examining brown adipose tissue (BAT) metabolism in adult humans have provided convincing evidence of its thermogenic potential and role in clearing circulating glucose and fatty acids under acute mild cold exposure. In contrast, early indications suggest that BAT metabolism is defective in obesity and type 2 diabetes, which may have important pathological and therapeutic implications. Although many mammalian models have demonstrated the phenotypic flexibility of this tissue through chronic cold exposure, little is known about the metabolic plasticity of BAT in humans. Objective: Our objective was to determine whether 4 weeks of daily cold exposure could increase both the volume of metabolically active BAT and its oxidative capacity. Design: Six nonacclimated men were exposed to 10°C for 2 hours daily for 4 weeks (5 d/wk), using a liquid-conditioned suit. Using electromyography combined with positron emission tomography with [11C]acetate and [18F]fluorodeoxyglucose, shivering intensity and BAT oxidative metabolism, glucose uptake, and volume before and after 4 weeks of cold acclimation were examined under controlled acute cold-exposure conditions. Results: The 4-week acclimation protocol elicited a 45% increase in BAT volume of activity (from 66 ± 30 to 95 ± 28 mL, P < .05) and a 2.2-fold increase in cold-induced total BAT oxidative metabolism (from 0.725 ± 0.300 to 1.591 ± 0.326 mL·s−1, P < .05). Shivering intensity was not significantly different before compared with after acclimation (2.1% ± 0.7% vs 2.0% ± 0.5% maximal voluntary contraction, respectively). Fractional glucose uptake in BAT increased after acclimation (from 0.035 ± 0.014 to 0.048 ± 0.012 min−1), and net glucose uptake also trended toward an increase (from 163 ± 60 to 209 ± 50 nmol·g−1·min−1). Conclusions: These findings demonstrate that daily cold exposure not only increases the volume of metabolically active BAT but also increases its oxidative capacity and thus its contribution to cold-induced thermogenesis.
                Bookmark

                Author and article information

                Journal
                Temperature
                Temperature
                Informa UK Limited
                2332-8940
                2332-8959
                August 04 2017
                July 03 2017
                May 22 2017
                July 03 2017
                : 4
                : 3
                : 217-226
                Affiliations
                [1 ] Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
                [2 ] Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
                Article
                10.1080/23328940.2017.1328999
                5605160
                28944268
                d1a32b41-8b33-42d4-a015-345da1a50062
                © 2017
                History

                Comments

                Comment on this article