7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria drive major transformations in the sulfur cycle, and play vital roles in oxic--anoxic transitions in lakes and coastal waters. However, information on the succession of these sulfur bacteria in seasonally stratified lakes using molecular biological techniques is scarce. Here, we used 16S rRNA gene amplicon sequencing to study the spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in Lake Vechten. Oxygen and sulfate were mixed throughout the water column in winter and early spring. Meanwhile, SRB, green sulfur bacteria (GSB), purple sulfur bacteria (PSB), and colorless sulfur bacteria (CSB) exclusively inhabited the sediment. After the water column stratified, oxygen and nitrate concentrations decreased in the hypolimnion and various SRB species expanded into the anoxic hypolimnion. Consequently, sulfate was reduced to sulfide, stimulating the growth of PSB and GSB in the metalimnion and hypolimnion during summer stratification. When hypoxia spread throughout the water column during fall turnover, SRB and GSB vanished from the water column, whereas CSB (mainly Arcobacter) and PSB ( Lamprocystis) became dominant and oxidized the accumulated sulfide under micro-aerobic conditions. Our results support the view that, once ecosystems have become anoxic and sulfidic, a large oxygen influx is needed to overcome the anaerobic sulfur cycle and bring the ecosystems back into their oxic state.

          Abstract

          The succession of sulfur bacteria during oxic--anoxic transitions in a seasonally stratified lake was investigated and summarized in a conceptual model.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The ecology and biotechnology of sulphate-reducing bacteria.

          Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thresholds of hypoxia for marine biodiversity.

            Hypoxia is a mounting problem affecting the world's coastal waters, with severe consequences for marine life, including death and catastrophic changes. Hypoxia is forecast to increase owing to the combined effects of the continued spread of coastal eutrophication and global warming. A broad comparative analysis across a range of contrasting marine benthic organisms showed that hypoxia thresholds vary greatly across marine benthic organisms and that the conventional definition of 2 mg O(2)/liter to designate waters as hypoxic is below the empirical sublethal and lethal O(2) thresholds for half of the species tested. These results imply that the number and area of coastal ecosystems affected by hypoxia and the future extent of hypoxia impacts on marine life have been generally underestimated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coherent dynamics and association networks among lake bacterioplankton taxa.

              Bacteria have important roles in freshwater food webs and in the cycling of elements in the ecosystem. Yet specific ecological features of individual phylogenetic groups and interactions among these are largely unknown. We used 454 pyrosequencing of 16S rRNA genes to study associations of different bacterioplankton groups to environmental characteristics and their co-occurrence patterns over an annual cycle in a dimictic lake. Clear seasonal succession of the bacterioplankton community was observed. After binning of sequences into previously described and highly resolved phylogenetic groups (tribes), their temporal dynamics revealed extensive synchrony and associations with seasonal events such as ice coverage, ice-off, mixing and phytoplankton blooms. Coupling between closely and distantly related tribes was resolved by time-dependent rank correlations, suggesting ecological coherence that was often dependent on taxonomic relatedness. Association networks with the abundant freshwater Actinobacteria and Proteobacteria in focus revealed complex interdependencies within bacterioplankton communities and contrasting linkages to environmental conditions. Accordingly, unique ecological features can be inferred for each tribe and reveal the natural history of abundant cultured and uncultured freshwater bacteria.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Ecol
                FEMS Microbiol. Ecol
                femsec
                FEMS Microbiology Ecology
                Oxford University Press
                0168-6496
                1574-6941
                08 March 2018
                April 2018
                08 March 2018
                : 94
                : 4
                : fiy040
                Affiliations
                [1]Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
                Author notes
                Corresponding author: Gerard Muyzer,Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam,Science Park 904, 1098 XH Amsterdam, The Netherlands, E-mail: g.muijzer@ 123456uva.nl
                Author information
                http://orcid.org/0000-0002-2422-0732
                Article
                fiy040
                10.1093/femsec/fiy040
                5939864
                29528404
                d1a43aac-3340-4df4-a9a3-7d3c0c93d537
                © FEMS 2018.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 March 2018
                : 04 November 2017
                Page count
                Pages: 11
                Funding
                Funded by: China Scholarship Council
                Award ID: 201206220165
                Funded by: ERC Advanced
                Award ID: 322551
                Categories
                Research Article

                Microbiology & Virology
                sulfur-oxidizing bacteria,sulfate-reducing bacteria,green sulfur bacteria,purple sulfur bacteria,regime shifts,stratified lakes

                Comments

                Comment on this article