2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of miRNAs as Therapeutic Tools in Sickle Cell Disease

      Medicina
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives: Sickle cell disorder (SCD) is a paradigmatic example of a complex monogenic disorder. SCD is characterized by the production of abnormal hemoglobin, primarily in the deoxygenated state, which makes erythrocytes susceptible to intracellular hemoglobin polymerization. Functional studies have affirmed that the dysregulation of miRNAs enhances clinical severity or has an ameliorating effect in SCD. miRNAs can be effectively regulated to reduce the pace of cell cycle progression, to reduce iron levels, to influence hemolysis and oxidative stress, and most importantly, to increase γ-globin gene expression and enhance the effectiveness of hydroxyurea. Results: This review highlights the roles played by some key miRNAs in hemoglobinopathies, especially in hematopoiesis, erythroid differentiation, and severity of anemia, which make miRNAs attractive molecular tools for innovative therapeutic approaches. Conclusions: In this era of targeted medicine, miRNAs mimics and antagomirs may be promising inducers of HbF synthesis which could ameliorate the clinical severity of SCD.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: not found
          • Article: not found

          MicroRNAs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of microRNA function in animals

            Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex regulatory networks in cell development, differentiation and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of how miRNAs are regulated. Here we review the mechanisms that modulate miRNA activity, their stability and their localization through alternative processing, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA–target interactions. We conclude by discussing intriguing open questions to be answered by future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia

              Transfusion-dependent β-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Medicina
                Medicina
                MDPI AG
                1648-9144
                October 2021
                October 14 2021
                : 57
                : 10
                : 1106
                Article
                10.3390/medicina57101106
                34684143
                d1aa19d0-27e9-401e-b4ac-5436b57d6c03
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article