12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Two separate one-electron steps in the reductive activation of the A cluster in subunit beta of the ACDS complex in Methanosarcina thermophila.

      Biochemistry
      Aldehyde Oxidoreductases, genetics, isolation & purification, metabolism, Catalysis, Electrons, Enzyme Activation, Methanosarcina, Models, Molecular, Multienzyme Complexes, Oxidation-Reduction, Protein Binding, Protein Subunits, Substrate Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acetyl-CoA decarbonylase/synthase (ACDS) is a multienzyme complex found in methanogens and certain other Archaea that carries out the overall synthesis and cleavage of the acetyl C-C and C-S bonds of acetyl-CoA. The reaction is involved both in the autotrophic fixation of carbon and in the process of methanogenesis from acetate, and takes place at a unique active site metal center known as the A cluster, located on the beta subunit of the ACDS complex and composed of a binuclear Ni-Ni site bridged by a cysteine thiolate to an Fe4S4 center. In this work, a high rate of acetyl-CoA synthesis was achieved with the recombinant ACDS beta subunit by use of methylcobinamide as an appropriate mimic of the physiological base-off corrinoid substrate. The redox dependence of acetyl-CoA synthesis exhibited one-electron Nernst behavior, and the effects of pH on the observed midpoint potential indicated that reductive activation of the A cluster also involves protonation. Initial burst kinetic studies indicated the formation of stoichiometric amounts of an A cluster-acetyl adduct, further supported by direct chromatographic isolation of an active enzyme-acetyl species. Titration experiments indicated that two electrons are required for activation of the enzyme in the process of forming the enzyme-acetyl intermediate. The results also established that the A cluster-acetyl species undergoes reductive elimination of the acetyl group with the simultaneous release of two, low potential electron equivalents. Thus, the one-electron Nernst behavior can be interpreted as the sum of two separate, low potential, one-electron steps. The results tend to exclude reaction mechanisms involving either one- or three-electron reduced forms of the A cluster as immediate precursors to the acetyl species. A scheme involving a [Fe4S4]1+-Ni1+ species is favored over a [Fe4S4]2+-Ni0 form. The role of proton uptake in the possible formation of a Ni2+-hydride intermediate is also discussed. Trapping of electrons during the formation of the A cluster-acetyl species from substrates CO and methylcobinamide was found to be highly favorable, thus presenting a means for extensive activation of the enzyme under otherwise nonpermissive physiological redox potentials.

          Related collections

          Author and article information

          Comments

          Comment on this article