Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anatomical Organization of the Rat Subfornical Organ

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain.

          Leptin secreted by adipocytes acts on the brain to reduce food intake by regulating neuronal activity in the mediobasal hypothalamus (MBH). Obesity is associated with resistance to high circulating leptin levels. Here, we demonstrate that peripherally administered leptin activates its receptor (LepR) in median eminence tanycytes followed by MBH neurons, a process requiring tanycytic ERK signaling and the passage of leptin through the cerebrospinal fluid. In mice lacking the signal-transducing LepRb isoform or with diet-induced obesity, leptin taken up by tanycytes accumulates in the median eminence and fails to reach the MBH. Triggering ERK signaling in tanycytes with EGF reestablishes leptin transport, elicits MBH neuron activation and energy expenditure in obese animals, and accelerates the restoration of leptin sensitivity upon the return to a normal-fat diet. ERK-dependent leptin transport by tanycytes could thus play a critical role in the pathophysiology of leptin resistance, and holds therapeutic potential for treating obesity. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurons for hunger and thirst transmit a negative-valence teaching signal

            Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting.

              The delivery of blood-borne molecules conveying metabolic information to neural networks that regulate energy homeostasis is restricted by brain barriers. The fenestrated endothelium of median eminence microvessels and tight junctions between tanycytes together compose one of these. Here, we show that the decrease in blood glucose levels during fasting alters the structural organization of this blood-hypothalamus barrier, resulting in the improved access of metabolic substrates to the arcuate nucleus. These changes are mimicked by 2-deoxyglucose-induced glucoprivation and reversed by raising blood glucose levels after fasting. Furthermore, we show that VEGF-A expression in tanycytes modulates these barrier properties. The neutralization of VEGF signaling blocks fasting-induced barrier remodeling and significantly impairs the physiological response to refeeding. These results implicate glucose in the control of blood-hypothalamus exchanges through a VEGF-dependent mechanism and demonstrate a hitherto unappreciated role for tanycytes and the permeable microvessels associated with them in the adaptive metabolic response to fasting. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                06 September 2021
                2021
                : 15
                : 691711
                Affiliations
                Department of Physiology, McGill University , Montreal, QC, Canada
                Author notes

                Edited by: Arumugam R. Jayakumar, Miami VA Healthcare System, United States

                Reviewed by: Apeksha Agarwal, University of Texas Health San Antonio, United States; Giuseppe Locatelli, University of Bern, Switzerland

                *Correspondence: Masha Prager-Khoutorsky, masha.prager-khoutorsky@ 123456mcgill.ca

                This article was submitted to Non-Neuronal Cells, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2021.691711
                8450496
                d2d9481f-78ec-4b9e-9f1a-847f80c33667
                Copyright © 2021 Hicks, Kobrinsky, Zhou, Yang and Prager-Khoutorsky.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 April 2021
                : 10 August 2021
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 134, Pages: 19, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                glia cells,tanycytes,osmoregulation,angiotensin ii,fenestrated blood capillary,blood-brain barrier

                Comments

                Comment on this article