12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      From buds to follicles: matrix metalloproteinases in developmental tissue remodeling during feather morphogenesis.

      Differentiation; Research in Biological Diversity
      Animals, Aprotinin, metabolism, Chick Embryo, Epithelium, embryology, Feathers, enzymology, Matrix Metalloproteinase 2, Matrix Metalloproteinase Inhibitors, Mesoderm, Morphogenesis, Organic Chemicals, Skin, Tissue Inhibitor of Metalloproteinase-2

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organogenesis involves a series of dynamic morphogenesis and remodeling processes. Since feathers exhibit complex forms, we have been using the feather as a model to analyze how molecular pathways and cellular events are used. While several major molecular pathways have been studied, the roles of matrix degrading proteases and inhibitors in feather morphogenesis are unknown. Here we addressed this knowledge gap by studying the temporal and spatial expression of proteases and inhibitors in developing feathers using mammalian antibodies that cross react with chicken proteins. We also investigated the effect of protease inhibitors on feather development employing an in vitro feather bud culture system. The results show that antibodies specific for mammalian MMP2 and TIMP2 stained positive in both feather epithelium and mesenchyme. The staining co-localized in structures of E10-E13 developing feathers. Interestingly, MMP2 and TIMP2 exhibited a complementary staining pattern in developing E15 and E20 feathers and in maturing feather filaments. Although they exhibited a slight delay in feather bud development, similar patterns of MMP2 and TIMP2 staining were observed in in vitro culture explants. The broad spectrum pharmacological inhibitors AG3340 and BB103 (MMP inhibitors) but not Aprotinin (a plasmin inhibitor) showed a reversible effect on epithelium invagination and feather bud elongation. TIMP2, a physiological inhibitor to MMPs, exhibited a similar effect. Markers of feather morphogenesis showed that MMP activity was required for both epithelium invagination and mesenchymal cell proliferation. Inhibition of MMP activity led to an overall delay in the expression of molecules that regulate either early feather bud growth and/or differentiation and thereby produced abnormal buds with incomplete follicle formation. This work demonstrates that MMPs and their inhibitors are not only important in injury repair, but also in development tissue remodeling as demonstrated here for the formation of feather follicles. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

          Related collections

          Author and article information

          Comments

          Comment on this article