29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Locomotor adaptation to a powered ankle-foot orthosis depends on control method

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control) and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control). Both controllers activated an artificial pneumatic muscle providing plantar flexion torque.

          Methods

          Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6) or myoelectric control (n = 6). We recorded lower limb electromyography (EMG), joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time.

          Results

          During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis.

          Conclusion

          These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of adding mass to the legs on the energetics and biomechanics of walking.

          The metabolic cost of walking increases when mass is added to the legs, but the effects of load magnitude and location on the energetics and biomechanics of walking are unclear. We hypothesized that with leg loading 1) net metabolic rate would be related to the moment of inertia of the leg (I(leg)), 2) kinematics would be conserved, except for heavy foot loads, and 3) swing-phase sagittal-plane net muscle moments and swing-phase leg-muscle electromyography (EMG) would increase. Five adult males walked on a force-measuring treadmill at 1.25 m.s(-1) with no load and with loads of 2 and 4 kg per foot and shank, 4 and 8 kg per thigh, and 4, 8, and 16 kg on the waist. We recorded metabolic rate and sagittal-plane kinematics and net muscle moments about the hip, knee, and ankle during the single-stance and swing phases, and EMG of key leg muscles. Net metabolic rate during walking increased with load mass and more distal location and was correlated with I(leg) (r2 = 0.43). Thigh loading was relatively inexpensive, helping to explain why the metabolic rate during walking is not strongly affected by body mass distribution. Kinematics, single-stance and swing-phase muscle moments, and EMG were similar while walking with no load or with waist, thigh, or shank loads. The increase in net metabolic rate with foot loading was associated with greater EMG of muscles that initiate leg swing and greater swing-phase muscle moments. Distal leg loads increase the metabolic rate required for swinging the leg. The increase in metabolic rate with more proximal loads may be attributable to a combination of supporting (via hip abduction muscles) and propagating the swing leg.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.

            An active ankle-foot orthoses (AAFO) is presented where the impedance of the orthotic joint is modulated throughout the walking cycle to treat drop-foot gait. During controlled plantar flexion, a biomimetic torsional spring control is applied where orthotic joint stiffness is actively adjusted to minimize forefoot collisions with the ground. Throughout late stance, joint impedance is minimized so as not to impede powered plantar flexion movements, and during the swing phase, a torsional spring-damper control lifts the foot to provide toe clearance. To assess the clinical effects of variable-impedance control, kinetic and kinematic gait data were collected on two drop-foot participants wearing the AAFO. For each participant, zero, constant, and variable impedance control strategies were evaluated and the results were compared to the mechanics of three age, weight, and height matched normals. We find that actively adjusting joint impedance reduces the occurrence of slap foot allows greater powered plantar flexion and provides for less kinematic difference during swing when compared to normals. These results indicate that a variable-impedance orthosis may have certain clinical benefits for the treatment of drop-foot gait compared to conventional ankle-foot orthoses having zero or constant stiffness joint behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning to walk with a robotic ankle exoskeleton.

              We used a lower limb robotic exoskeleton controlled by the wearer's muscle activity to study human locomotor adaptation to disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion assistance from the exoskeleton in real time. We hypothesized that subjects' gait kinematics would be initially distorted by the added exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by approximately 35% and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.
                Bookmark

                Author and article information

                Journal
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central
                1743-0003
                2007
                21 December 2007
                : 4
                : 48
                Affiliations
                [1 ]Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd., Ann Arbor, MI 48109-2099, USA
                [2 ]Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
                [3 ]Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA
                [4 ]Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA
                Article
                1743-0003-4-48
                10.1186/1743-0003-4-48
                2234414
                18154649
                d3050051-328f-45b6-aa26-ea2b089fc2dd
                Copyright © 2007 Cain et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 March 2007
                : 21 December 2007
                Categories
                Research

                Neurosciences
                Neurosciences

                Comments

                Comment on this article