6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the road traffic situation becomes complex, the task of traffic management takes on an increasingly heavy load. The air-to-ground traffic administration network of drones has become an important tool to promote the high quality of traffic police work in many places. Drones can be used instead of a large number of human beings to perform daily tasks, as: traffic offense detection, daily crowd detection, etc. Drones are aerial operations and shoot small targets. So the detection accuracy of drones is less. To address the problem of low accuracy of Unmanned Aerial Vehicles (UAVs) in detecting small targets, we designed a more suitable algorithm for UAV detection and called GBS-YOLOv5. It was an improvement on the original YOLOv5 model. Firstly, in the default model, there was a problem of serious loss of small target information and insufficient utilization of shallow feature information as the depth of the feature extraction network deepened. We designed the efficient spatio-temporal interaction module to replace the residual network structure in the original network. The role of this module was to increase the network depth for feature extraction. Then, we added the spatial pyramid convolution module on top of YOLOv5. Its function was to mine small target information and act as a detection head for small size targets. Finally, to better preserve the detailed information of small targets in the shallow features, we proposed the shallow bottleneck. And the introduction of recursive gated convolution in the feature fusion section enabled better interaction of higher-order spatial semantic information. The GBS-YOLOv5 algorithm conducted experiments showing that the value of mAP@0.5 was 35.3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and the mAP@0.5:0.95 was 20.0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} . Compared to the default YOLOv5 algorithm was boosted by 4.0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 3.5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} , respectively.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Gradient-based learning applied to document recognition

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

            State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Pascal Visual Object Classes (VOC) Challenge

                Bookmark

                Author and article information

                Contributors
                haiyingliu2019@qlu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 June 2023
                13 June 2023
                2023
                : 13
                : 9577
                Affiliations
                [1 ]GRID grid.443420.5, ISNI 0000 0000 9755 8940, The School of Information and Automation Engineering, , Qilu University of Technology (Shandong Academy of Sciences), ; Shandong, China
                [2 ]GRID grid.55602.34, ISNI 0000 0004 1936 8200, The School of Electrical and Computer Engineering, , Dalhousie University, ; Halifax, Canada
                Article
                36781
                10.1038/s41598-023-36781-2
                10264355
                37311854
                d307aaca-2bca-47da-b582-08f4f0d274c1
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 April 2023
                : 9 June 2023
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                engineering,electrical and electronic engineering
                Uncategorized
                engineering, electrical and electronic engineering

                Comments

                Comment on this article