8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The REBURN model: simulating system-level forest succession and wildfire dynamics

      , , , ,
      Fire Ecology
      Springer Science and Business Media LLC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Historically, reburn dynamics from cultural and lightning ignitions were central to the ecology of fire in the western United States (wUS), whereby past fire effects limited future fire growth and severity. Over millennia, reburns created heterogenous patchworks of vegetation and fuels that provided avenues and impediments to the flow of future fires, and feedbacks to future fire event sizes and their severity patterns. These dynamics have been significantly altered after more than a century of settler colonization, fire exclusion, and past forest management, now compounded by rapid climatic warming. Under climate change, the area impacted by large and severe wildfires will likely increase — with further implications for self-regulating properties of affected systems. An in-depth understanding of the ecology of reburns and their influence on system-level dynamics provides a baseline for understanding current and future landscape fire-vegetation interactions.

          Results

          Here, we present a detailed characterization of REBURN — a geospatial modeling framework designed to simulate reburn dynamics over large areas and long time frames. We interpret fire-vegetation dynamics for a large testbed landscape in eastern Washington State, USA. The landscape is comprised of common temperate forest and nonforest vegetation types distributed along broad topo-edaphic gradients. Each pixel in a vegetation type is represented by a pathway group (PWG), which assigns a specific state-transition model (STM) based on that pixel’s biophysical setting. STMs represent daily simulated and annually summarized vegetation and fuel succession, and wildfire effects on forest and nonforest succession. Wildfire dynamics are driven by annual ignitions, fire weather and topographic conditions, and annual vegetation and fuel successional states of burned and unburned pixels.

          Conclusions

          Our simulation study is the first to evaluate how fire exclusion and forest management altered the active fire regime of this landscape, its surface and canopy fuel patterns, forest and nonforest structural conditions, and the dynamics of forest reburning. The REBURN framework is now being used in related studies to evaluate future climate change scenarios and compare the efficacy of fire and fuel management strategies that either enable the return of active fire regimes or depend on fire suppression and wildfire effects on forest burning.

          Resumen

          Antecedentes

          Históricamente, la dinámica de los fuegos recurrentes iniciados por igniciones tanto culturales como por rayos, fueron eventos centrales en el oeste de los Estados Unidos (wUS), por lo que los efectos de fuegos pasados limitan el crecimiento y severidad de fuegos futuros. A lo largos de milenos, los fuegos recurrentes crearon parches de vegetación y de combustibles heterogéneos que proveyeron de vías e impedimentos en el flujo de fuegos futuros, y retroalimentaciones para eventos de fuegos futuros de diferentes tamaños y sus patrones de severidad. Estas dinámicas fueron significativamente alteradas luego de más de un siglo de colonización por inmigrantes, la exclusión del fuego y el manejo forestal pasado, y ahora intensificadas por el rápido calentamiento global. Bajo el cambio climático, el área impactada por fuegos más grandes y severos probablemente se incremente -con implicaciones para las propiedades de auto-regulación- de los sistemas afectados. Un entendimiento profundo de la ecología de los fuegos recurrentes y su influencia en la dinámica a nivel de sistemas proveerá de una línea de base para entender las interacciones actuales y futuras entre fuegos y vegetación a nivel de paisaje.

          Resultados

          Presentamos acá una detallada caracterización de REBURN, un modelo geoespacial diseñado para simular la dinámica de fuegos recurrentes en grandes áreas y para largos períodos de tiempo. Interpretamos la dinámica fuego-vegetación para un gran banco de prueba a nivel de paisaje en el este del estado de Washington, EEUU. El paisaje está conformado por bosques templados y áreas con tipos de vegetación no boscosa distribuidas a lo largo de amplios gradientes topo-edáficos. Cada pixel en cada tipo de vegetación está representado por un grupo de corredor (PWG), que se asigna a un modelo de transición especifico (STM) basado en los atributos biofísicos de cada pixel. Los STMs representan las simulaciones diarias y resumen anualmente la vegetación y la sucesión del combustible, y los efectos del fuego en áreas boscosas y no boscosas. LA dinámica de los incendios está conducida por las igniciones anuales, las condiciones meteorológicas en relación al fuego y las condiciones de la topografía, y la vegetación anual y los estados sucesionales de los combustibles en pixeles quemados y no quemados.

          Conclusiones

          Nuestro estudio de simulación en el primero en evaluar cómo la exclusión del fuego y el manejo forestal alteraron los regímenes de fuego en este paisaje, los patrones de combustibles superficiales y en los doseles, las condiciones estructurales de las áreas boscosas y no boscosas, y la dinámica de los fuegos recurrentes en esos bosques. La estructura del modelo REBURN está siendo ahora usada en estudios relacionados para evaluar escenarios futuros de cambio climático y comparando la eficacia de estrategias de manejo del fuego y de los combustibles que podría permitir el regreso de regímenes de fuego activos o depender de la supresión y los efectos de los incendios en las quemas forestales.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Climate-induced variations in global wildfire danger from 1979 to 2013

          Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring

            Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring. This article is part of the themed issue ‘The interaction of fire and mankind’.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human-started wildfires expand the fire niche across the United States

              Significance Fighting wildfires in the United States costs billions of dollars annually. Public dialog and ongoing research have focused on increasing wildfire risk because of climate warming, overlooking the direct role that people play in igniting wildfires and increasing fire activity. Our analysis of two decades of government agency wildfire records highlights the fundamental role of human ignitions. Human-started wildfires accounted for 84% of all wildfires, tripled the length of the fire season, dominated an area seven times greater than that affected by lightning fires, and were responsible for nearly half of all area burned. National and regional policy efforts to mitigate wildfire-related hazards would benefit from focusing on reducing the human expansion of the fire niche.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Fire Ecology
                fire ecol
                Springer Science and Business Media LLC
                1933-9747
                December 2023
                June 30 2023
                : 19
                : 1
                Article
                10.1186/s42408-023-00190-7
                d3dab463-07c9-452e-8865-6864c0cf8b21
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article