0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Receptivity to malaria: meaning and measurement

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          “Receptivity” to malaria is a construct developed during the Global Malaria Eradication Programme (GMEP) era. It has been defined in varied ways and no consistent, quantitative definition has emerged over the intervening decades. Despite the lack of consistency in defining this construct, the idea that some areas are more likely to sustain malaria transmission than others has remained important in decision-making in malaria control, planning for malaria elimination and guiding activities during the prevention of re-establishment (POR) period. This manuscript examines current advances in methods of measurement. In the context of a decades long decline in global malaria transmission and an increasing number of countries seeking to eliminate malaria, understanding and measuring malaria receptivity has acquired new relevance.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new world malaria map: Plasmodium falciparum endemicity in 2010

          Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfR c of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 2015.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The changing epidemiology of malaria elimination: new strategies for new challenges.

            Malaria-eliminating countries achieved remarkable success in reducing their malaria burdens between 2000 and 2010. As a result, the epidemiology of malaria in these settings has become more complex. Malaria is increasingly imported, caused by Plasmodium vivax in settings outside sub-Saharan Africa, and clustered in small geographical areas or clustered demographically into subpopulations, which are often predominantly adult men, with shared social, behavioural, and geographical risk characteristics. The shift in the populations most at risk of malaria raises important questions for malaria-eliminating countries, since traditional control interventions are likely to be less effective. Approaches to elimination need to be aligned with these changes through the development and adoption of novel strategies and methods. Knowledge of the changing epidemiological trends of malaria in the eliminating countries will ensure improved targeting of interventions to continue to shrink the malaria map. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urbanization, malaria transmission and disease burden in Africa.

              Many attempts have been made to quantify Africa's malaria burden but none has addressed how urbanization will affect disease transmission and outcome, and therefore mortality and morbidity estimates. In 2003, 39% of Africa's 850 million people lived in urban settings; by 2030, 54% of Africans are expected to do so. We present the results of a series of entomological, parasitological and behavioural meta-analyses of studies that have investigated the effect of urbanization on malaria in Africa. We describe the effect of urbanization on both the impact of malaria transmission and the concomitant improvements in access to preventative and curative measures. Using these data, we have recalculated estimates of populations at risk of malaria and the resulting mortality. We find there were 1,068,505 malaria deaths in Africa in 2000 - a modest 6.7% reduction over previous iterations. The public-health implications of these findings and revised estimates are discussed.
                Bookmark

                Author and article information

                Contributors
                jyukich@tulane.edu
                lindebladek@who.int
                kolczinskij@who.int
                Journal
                Malar J
                Malar J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                8 May 2022
                8 May 2022
                2022
                : 21
                : 145
                Affiliations
                [1 ]GRID grid.265219.b, ISNI 0000 0001 2217 8588, Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, , Tulane University School of Public Health and Tropical Medicine, ; New Orleans, LA USA
                [2 ]GRID grid.3575.4, ISNI 0000000121633745, Global Malaria Programme, , World Health Organization, ; Geneva, CH USA
                Author information
                http://orcid.org/0000-0002-6160-5295
                Article
                4155
                10.1186/s12936-022-04155-0
                9080212
                35527264
                d401f9b1-e91b-47df-abcb-1403f305ec35
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 12 May 2021
                : 7 April 2022
                Funding
                Funded by: World Health Organization
                Categories
                Review
                Custom metadata
                © The Author(s) 2022

                Infectious disease & Microbiology
                malaria transmission measurement,elimination,receptivity,transmission networks

                Comments

                Comment on this article