20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Alfven Waves and Radiation Pressure in Dusty Winds of Late-Type Stars. II. Dust-Cyclotron Damping

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are in the literature several theories to explain the mass loss in stellar winds. In particular, for late-type stars, some authors have proposed a wind model driven by an outward-directed flux of damped Alfven waves. The winds of these stars present great amounts of dust particles that, if charged, can give rise to new wave modes or modify the pre-existing ones. In this work, we study how the dust can affect the propagation of Alfven waves in these winds taking into account a specific damping mechanism, dust-cyclotron damping. This damping affects the Alfven wave propagation near the dust-cyclotron frequency. Hence, if we assume a dust size distribution, the damping occurs over a broad band of wave frequencies. In this work, we present a model of Alfven wave-driven winds using the dust-cyclotron damping mechanism. On the basis of coronal holes in the Sun, which present a superradial expansion, our model also assumes a diverging geometry for the magnetic field. Thus, the mass, momentum, and energy equations are obtained and then solved in a self-consistent approach. Our results of wind velocity and temperature profiles for a typical K5 supergiant star shows compatibility with observations. We also show that, considering the presence of charged dust particles, the wave flux is less damped due to the dust-cyclotron damping than it would be if we consider some other damping mechanisms studied in the literature, such as nonlinear damping, resonant surface damping, and turbulent damping.

          Related collections

          Author and article information

          Journal
          07 November 2005
          2006-03-06
          Article
          10.1086/499329
          astro-ph/0511192
          d40752d5-4f0f-4c61-9a47-f3f70185bb54
          History
          Custom metadata
          Astrophys.J.639:416-422,2006
          10 pages, 5 figures. ApJ, vol. 639, pp 416-422. Minor changes in the text
          astro-ph

          Comments

          Comment on this article