0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comprehensive Prognostic and Immune Analysis of Ferroptosis-Related Genes Identifies SLC7A11 as a Novel Prognostic Biomarker in Lung Adenocarcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung adenocarcinoma (LUAD) is still one of the illnesses with the greatest mortality and morbidity. As a recently identified mode of cellular death, the activation of ferroptosis may promote the effectiveness of antitumor therapies in several types of tumors. However, the expression and clinical significance of Ferroptosis-associated genes in LUAD are still elusive. The RNA sequencing data of LUAD and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) datasets. Subsequently, potential prognostic biomarkers were determined by the use of biological information technology. The R software package “ggalluvial” was applied to structure Sanguini diagram. Herein, our team screened 14 dysregulated ferroptosis-associated genes in LUAD. Among them, only four genes were associated with clinical outcome of LUAD patients, including ATP5MC3, FANCD2, GLS2, and SLC7A11. In addition, we found that high SLC7A11 expression predicted an advanced clinical progression in LUAD patients. Additionally, 8 immune checkpoint genes and 7 immune cells for LUAD were recognized to be related to the expression of SLC7A11. KEGG assays indicated that high expression of SLC7A11 might participate in the modulation of intestinal immune network for IgA generation and Staphylococcus aureus infection. Overall, our findings revealed that SLC7A11 might become a potentially diagnostic biomarker and SLC7A11 might serve as an independent prognosis indicator for LUAD.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

          Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Immune checkpoint inhibitors: recent progress and potential biomarkers

            Cancer growth and progression are associated with immune suppression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. Monoclonal antibodies that target immune checkpoints provided an immense breakthrough in cancer therapeutics. Among the immune checkpoint inhibitors, PD-1/PD-L1 and CTLA-4 inhibitors showed promising therapeutic outcomes, and some have been approved for certain cancer treatments, while others are under clinical trials. Recent reports have shown that patients with various malignancies benefit from immune checkpoint inhibitor treatment. However, mainstream initiation of immune checkpoint therapy to treat cancers is obstructed by the low response rate and immune-related adverse events in some cancer patients. This has given rise to the need for developing sets of biomarkers that predict the response to immune checkpoint blockade and immune-related adverse events. In this review, we discuss different predictive biomarkers for anti-PD-1/PD-L1 and anti-CTLA-4 inhibitors, including immune cells, PD-L1 overexpression, neoantigens, and genetic and epigenetic signatures. Potential approaches for further developing highly reliable predictive biomarkers should facilitate patient selection for and decision-making related to immune checkpoint inhibitor-based therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer immunoediting: from immunosurveillance to tumor escape.

              The concept that the immune system can recognize and destroy nascent transformed cells was originally embodied in the cancer immunosurveillance hypothesis of Burnet and Thomas. This hypothesis was abandoned shortly afterwards because of the absence of strong experimental evidence supporting the concept. New data, however, clearly show the existence of cancer immunosurveillance and also indicate that it may function as a component of a more general process of cancer immunoediting. This process is responsible for both eliminating tumors and sculpting the immunogenic phenotypes of tumors that eventually form in immunocompetent hosts. In this review, we will summarize the historical and experimental basis of cancer immunoediting and discuss its dual roles in promoting host protection against cancer and facilitating tumor escape from immune destruction.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Immunol Res
                J Immunol Res
                jir
                Journal of Immunology Research
                Hindawi
                2314-8861
                2314-7156
                2022
                25 April 2022
                : 2022
                : 1951620
                Affiliations
                1Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
                2Department of Traditional Chinese Medicine, Nantong Maternity and Child Health Care Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
                3Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
                4Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
                Author notes

                Academic Editor: Dawei Cui

                Author information
                https://orcid.org/0000-0001-6686-7342
                https://orcid.org/0000-0002-6984-8523
                Article
                10.1155/2022/1951620
                9061045
                35509981
                d40f8d79-556e-4a96-8a19-dc591a116a85
                Copyright © 2022 Li Qian et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 January 2022
                : 2 April 2022
                : 4 April 2022
                Funding
                Funded by: China Postdoctoral Science Foundation
                Award ID: 2019M651928
                Funded by: National Natural Science Foundation of China
                Award ID: 82102167
                Categories
                Research Article

                Comments

                Comment on this article