4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a Synthetic Synovial Fluid for Tribological Testing

      , ,
      Lubricants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Loading of the knee joint during activities of daily living measured in vivo in five subjects.

          Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10-20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range -2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between -0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between -1.1% BWm (internal torque) and 0.53% BWm (external torque). The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hip joint loading during walking and running, measured in two patients.

            The resultant hip joint force, its orientation and the moments were measured in two patients during walking and running using telemetering total hip prostheses. One patient underwent bilateral joint replacement and a second patient, additionally suffering from a neuropathic disease and atactic gait patterns, received one instrumented hip implant. The joint loading was observed over the first 30 and 18 months, respectively, following implantation. In the first patient the median peak forces increased with the walking speed from about 280% of the patient's body weight (BW) at 1 km h-1 to approximately 480% BW at 5 km h-1. Jogging and very fast walking both raised the forces to about 550% BW; stumbling on one occasion caused magnitudes of 720% BW. In the second patient median forces at 3 km h-1 were about 410% BW and a force of 870% BW was observed during stumbling. During all types of activities, the direction of the peak force in the frontal plane changed only slightly when the force magnitude was high. Perpendicular to the long femoral axis, the peak force acted predominantly from medial to lateral. The component from ventral to dorsal increased at higher force magnitudes. In one hip in the first patient and in the second patient the direction of large forces approximated the average anteversion of the natural femur. The torsional moments around the stem of the implant were 40.3 N m in the first patient and 24 N m in the second.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene.

              Highly crosslinked polyethylene (HXLPE) was introduced to reduce wear and osteolysis in total joint arthroplasty. While many studies report wear and osteolysis associated with HXLPE, analytical techniques, clinical study design and followup, HXLPE formulation and implant design characteristics, and patient populations differ substantially among investigations, complicating a unified perspective. Literature on first-generation HXLPE was summarized. We systematically reviewed the radiographic wear data and incidence of osteolysis for HXLPE in hip and knee arthroplasty. PubMed identified 391 studies; 28 met inclusion criteria for a weighted-averages analysis of two-dimensional femoral head penetration rates. To determine the incidence of osteolysis, we estimated a pooled odds ratio using a random-effects model. Weighted-averages analyses of femoral head penetration rates in HXLPE liners and conventional UHMWPE liners resulted, respectively, in a mean two-dimensional linear penetration rate of 0.042 mm/year based on 28 studies (n=1503 hips) and 0.137 mm/year based on 18 studies (n=695 hips). The pooled odds ratio for the risk of osteolysis in HXLPE versus conventional liners was 0.13 (95% confidence interval, 0.06-0.27) among studies with minimum 5-year followup. We identified two clinical studies of HXLPE in TKA, preventing systematic analysis of outcomes. HXLPE liner studies consistently report lower femoral head penetration and an 87% lower risk of osteolysis. Reduction in femoral head penetration or osteolysis risk is not established for large-diameter (>32 mm) metallic femoral heads or ceramic femoral heads of any size. Few studies document the clinical performance of HXLPE in knees.
                Bookmark

                Author and article information

                Journal
                LUBRCF
                Lubricants
                Lubricants
                MDPI AG
                2075-4442
                December 2015
                December 01 2015
                : 3
                : 4
                : 664-686
                Article
                10.3390/lubricants3040664
                d47afa36-837b-4d8a-b9ac-cecf4a9188a9
                © 2015

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article