20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xyloketal derivative C53N protects against mild traumatic brain injury in mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Mild traumatic brain injury (mTBI), the most common type of TBI, can result in prolonged cognitive impairment, mood disorders, and behavioral problems. Reducing oxidative stress and inflammation can rescue the neurons from mTBI-induced cell death. Xyloketal B, a natural product from mangrove fungus, has shown good antioxidative and neuroprotective effects in several disease models. Here, we investigated the potential protection afforded by a xyloketal derivative, C53N, in a closed-skull mTBI model.

          Materials and methods

          Skulls of mice were thinned to 20–30 µm thickness, following which they were subjected to a slight compression injury to induce mTBI. One hour after TBI, mice were intraperitoneally injected with C53N, which was solubilized in 0.5% dimethyl sulfoxide in saline. In vivo two-photon laser scanning microscopy was used to image cell death in injured parenchyma in each mouse over a 12-hour period (at 1, 3, 6, and 12 hours). Water content and oxidation index, together with pathological analysis of glial reactivity, were assessed at 24 hours to determine the effect of C53N on mTBI.

          Results

          Cell death, oxidative stress, and glial reactivity increased in mTBI mice compared with sham-injured mice. Treatment with 40 or 100 mg/kg C53N 1 hour after mTBI significantly attenuated oxidative stress and glial reactivity and reduced parenchymal cell death at the acute phase after mTBI.

          Conclusion

          The present study highlights the therapeutic potential of the xyloketal derivative C53N for pharmacological intervention in mTBI.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          TRANSCRANIAL AMELIORATION OF INFLAMMATION AND CELL DEATH FOLLOWING BRAIN INJURY

          Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function 1, 2 . At present no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain novel insights into TBI pathogenesis, we developed a novel closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic receptor dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We additionally show that the skull bone is permeable to small molecular weight compounds and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results provide novel insights into the acute cellular response to TBI and a means to locally deliver therapeutic compounds to the site of injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early management of severe traumatic brain injury.

            Severe traumatic brain injury remains a major health-care problem worldwide. Although major progress has been made in understanding of the pathophysiology of this injury, this has not yet led to substantial improvements in outcome. In this report, we address present knowledge and its limitations, research innovations, and clinical implications. Improved outcomes for patients with severe traumatic brain injury could result from progress in pharmacological and other treatments, neural repair and regeneration, optimisation of surgical indications and techniques, and combination and individually targeted treatments. Expanded classification of traumatic brain injury and innovations in research design will underpin these advances. We are optimistic that further gains in outcome for patients with severe traumatic brain injury will be achieved in the next decade. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidant therapies in traumatic brain and spinal cord injury.

              Free radical formation and oxidative damage have been extensively investigated and validated as important contributors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following injury occurring within minutes of mechanical impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, peroxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function, which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial respiratory failure and microvascular damage. Antioxidant approaches include the inhibition and/or scavenging of superoxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute traumatic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary antioxidants will also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2019
                27 December 2018
                : 13
                : 173-182
                Affiliations
                [1 ]Department of Neurology, Guangdong Provisional Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China, peizhong@ 123456mail.sysu.edu.cn
                [2 ]Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, People’s Republic of China
                [3 ]School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China, cespjy@ 123456mail.sysu.edu.cn
                Author notes
                Correspondence: Zhong Pei, Department of Neurology, Guangdong Provisional Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, No 58 Zhongshan Road II, Guangzhou 510080, People’s Republic of China, Tel +86 20 8775 5766 ext 8282, Fax +86 20 8733 5935, Email peizhong@ 123456mail.sysu.edu.cn
                Jiyan Pang, School of Chemistry, Sun Yat-sen University, No 135, Xingang Xi Road, Guangzhou 510275, People’s Republic of China, Tel/fax +86 20 8403 6554, Email cespjy@ 123456mail.sysu.edu.cn
                Article
                dddt-13-173
                10.2147/DDDT.S177951
                6312055
                d510002e-c015-4512-9e47-d1ab7bbc2908
                © 2019 Liang et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                xyloketal derivative,mtbi,in vivo imaging,antioxidant activity,neuroprotective activity

                Comments

                Comment on this article