10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Misconceptions About Colour Categories

      Review of Philosophy and Psychology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references271

          • Record: found
          • Abstract: found
          • Article: not found

          Computational modelling of visual attention.

          Five important trends have emerged from recent work on computational models of focal visual attention that emphasize the bottom-up, image-based control of attentional deployment. First, the perceptual saliency of stimuli critically depends on the surrounding context. Second, a unique 'saliency map' that topographically encodes for stimulus conspicuity over the visual scene has proved to be an efficient and plausible bottom-up control strategy. Third, inhibition of return, the process by which the currently attended location is prevented from being attended again, is a crucial element of attentional deployment. Fourth, attention and eye movements tightly interplay, posing computational challenges with respect to the coordinate system used to control attention. And last, scene understanding and object recognition strongly constrain the selection of attended locations. Insights from these five key areas provide a framework for a computational and neurobiological understanding of visual attention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromatic mechanisms in lateral geniculate nucleus of macaque.

            This paper introduces a new technique for the analysis of the chromatic properties of neurones, and applies it to cells in the lateral geniculate nucleus (l.g.n.) of macaque. The method exploits the fact that for any cell that combines linearly the signals from cones there is a restricted set of lights to which it is equally sensitive, and whose members can be exchanged for one another without evoking a response. Stimuli are represented in a three-dimensional space defined by an axis along which only luminance varies, without change in chromaticity, a 'constant B' axis along which chromaticity varies without changing the excitation of blue-sensitive (B) cones, a 'constant R & G' axis along which chromaticity varies without change in the excitation of red-sensitive (R) or green-sensitive (G) cones. The orthogonal axes intersect at a white point. The isoluminant plane defined by the intersection of the 'constant B' and 'constant R & G' axes contains lights that vary only in chromaticity. In polar coordinates the constant B axis is assigned the azimuth 0-180 deg, and the constant R & G axis the azimuth 90-270 deg. Luminance is expressed as elevation above or below the isoluminant plane (-90 to +90 deg). For any cell that combines cone signals linearly, there is one plane in this space, passing through the white point, that contains all lights that can be exchanged silently. The position of this 'null plane' provides the 'signature' of the cell, and is specified by its azimuth (the direction in which it intersects the isoluminant plane of the stimulus space) and its elevation (its angle of inclination to the isoluminant plane). A colour television receiver was used to produce sinusoidal gratings whose chromaticity and luminance could be modulated along any vector passing through the white point in the space described. The spatial and temporal frequencies of modulation could be varied over a large range. When stimulated by patterns of low spatial and low temporal frequency, two groups of cells in the parvocellular laminae of the l.g.n. were distinguished by the locations of their null planes. The null planes of the larger group were narrowly distributed about an azimuth of 92.6 deg and more broadly about an elevation of 51.5 deg, which suggests that they receive opposed, but not equally balanced, inputs from only R and G cones. These we call R-G cells.(ABSTRACT TRUNCATED AT 400 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cognition does not affect perception: Evaluating the evidence for 'top-down' effects.

              What determines what we see? In contrast to the traditional "modular" understanding of perception, according to which visual processing is encapsulated from higher-level cognition, a tidal wave of recent research alleges that states such as beliefs, desires, emotions, motivations, intentions, and linguistic representations exert direct top-down influences on what we see. There is a growing consensus that such effects are ubiquitous, and that the distinction between perception and cognition may itself be unsustainable. We argue otherwise: none of these hundreds of studies - either individually or collectively - provide compelling evidence for true top-down effects on perception, or "cognitive penetrability". In particular, and despite their variety, we suggest that these studies all fall prey to only a handful of pitfalls. And whereas abstract theoretical challenges have failed to resolve this debate in the past, our presentation of these pitfalls is empirically anchored: in each case, we show not only how certain studies could be susceptible to the pitfall (in principle), but how several alleged top-down effects actually are explained by the pitfall (in practice). Moreover, these pitfalls are perfectly general, with each applying to dozens of other top-down effects. We conclude by extracting the lessons provided by these pitfalls into a checklist that future work could use to convincingly demonstrate top-down effects on visual perception. The discovery of substantive top-down effects of cognition on perception would revolutionize our understanding of how the mind is organized; but without addressing these pitfalls, no such empirical report will license such exciting conclusions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Review of Philosophy and Psychology
                Rev.Phil.Psych.
                Springer Science and Business Media LLC
                1878-5158
                1878-5166
                September 2019
                July 12 2018
                September 2019
                : 10
                : 3
                : 499-540
                Article
                10.1007/s13164-018-0404-5
                d51700a8-76ef-45b9-bd95-dffcbd466d28
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article