10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution

      , , ,
      Heredity
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring’s immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa. </p>

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          The adaptive significance of maternal effects

          T Mousseau (1998)
          Recently, the adaptive significance of maternal effects has been increasingly recognized. No longer are maternal effects relegated as simple `troublesome sources of environmental resemblance' that confound our ability to estimate accurately the genetic basis of traits of interest. Rather, it has become evident that many maternal effects have been shaped by the action of natural selection to act as a mechanism for adaptive phenotypic response to environmental heterogeneity. Consequently, maternal experience is translated into variation in offspring fitness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology

            In the face of continuous threats from parasites, hosts have evolved an elaborate series of preventative and controlling measures - the immune system - in order to reduce the fitness costs of parasitism. However, these measures do have associated costs. Viewing an individual's immune response to parasites as being subject to optimization in the face of other demands offers potential insights into mechanisms of life history trade-offs, sexual selection, parasite-mediated selection and population dynamics. We discuss some recent results that have been obtained by practitioners of this approach in natural and semi-natural populations, and suggest some ways in which this field may progress in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological and pathological roles for microRNAs in the immune system.

              Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.
                Bookmark

                Author and article information

                Journal
                Heredity
                Heredity
                Springer Nature America, Inc
                0018-067X
                1365-2540
                September 2018
                June 18 2018
                September 2018
                : 121
                : 3
                : 225-238
                Article
                10.1038/s41437-018-0101-2
                6082847
                29915335
                d55297a7-a366-4e16-9565-eebec6016931
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article