46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Par-1 Regulates Tissue Growth by Influencing Hippo Phosphorylation Status and Hippo-Salvador Association

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Par-1 regulates the Hippo signaling pathway in Drosophila melanogaster by modifying the phosphorylation status of Hippo and also by inhibiting the interaction of Hippo and Salvador.

          Abstract

          The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador ( sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.

          Author Summary

          An organism's organ size is determined by cell number, the size of each cell, and the distance between cells. All of these factors are controlled by the coordination of different cell signaling pathways and other mechanisms. The Hippo signaling pathway controls organ size by restricting the number of cells that make up the organ. Malfunction of this pathway leads to abnormal overgrowth, and is involved in a large number of human diseases and cancers. We identify here a component of the Hippo pathway, Par-1, which controls tissue growth by negatively regulating the Hippo pathway. We show that overexpression or depletion of Par-1 influences tissue growth in fruit flies via Hippo signaling. Then, by genetic and biochemical experiments, we show that Par-1 interacts with Hippo, regulating the Hippo Ser30 phosphorylation status to alter Hippo activity. In addition, we found that Par-1 regulates Hippo signaling via inhibition of the Hippo-Salvador association in a kinase-dependent fashion. We predict that Par-1 is a potential oncogene and that its regulatory role in Hippo signaling could be conserved.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

          We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hippo signaling: growth control and beyond.

            The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway.

              Proliferation and apoptosis must be precisely regulated to form organs with appropriate cell numbers and to avoid tumour growth. Here we show that Hippo (Hpo), the Drosophila homologue of the mammalian Ste20-like kinases, MST1/2, promotes proper termination of cell proliferation and stimulates apoptosis during development. hpo mutant tissues are larger than normal because mutant cells continue to proliferate beyond normal tissue size and are resistant to apoptotic stimuli that usually eliminate extra cells. Hpo negatively regulates expression of Cyclin E to restrict cell proliferation, downregulates the Drosophila inhibitor of apoptosis protein DIAP1, and induces the proapoptotic gene head involution defective (hid) to promote apoptosis. The mutant phenotypes of hpo are similar to those of warts (wts), which encodes a serine/threonine kinase of the myotonic dystrophy protein kinase family, and salvador (sav), which encodes a WW domain protein that binds to Wts. We find that Sav binds to a regulatory domain of Hpo that is essential for its function, indicating that Hpo acts together with Sav and Wts in a signalling module that coordinately regulates cell proliferation and apoptosis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2013
                August 2013
                6 August 2013
                : 11
                : 8
                : e1001620
                Affiliations
                [1 ]State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
                [2 ]Shanghai Ocean University, Shanghai, P.R. China
                [3 ]Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [4 ]Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, P.R. China
                [5 ]Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
                University of Zurich, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: HLH SW XYL LZ. Performed the experiments: HLH SW LD XG. Analyzed the data: HLH SW MXY BZ ZZ HJ JJ YZ XYL LZ. Contributed reagents/materials/analysis tools: CW WW YL MF CD LL BZ ZZ HJ JJ YZ. Wrote the paper: HLH SW MXY LZ.

                Article
                PBIOLOGY-D-13-00801
                10.1371/journal.pbio.1001620
                3735459
                23940457
                d58d4716-6eb5-4309-9c6a-562e1c65c015
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 February 2013
                : 19 June 2013
                Page count
                Pages: 15
                Funding
                This research was supported by grants from the National Basic Research Program of China (973 Program 2010CB912101, 2012CB945001, 2011CB943902, 2010CB529901, 2011CB510104), from the “Strategic Priority Research Program” of the Chinese Academy of Sciences, grant no. XDA01010406, XDA01010405, and also supported by grants from National Natural Science Foundation of China (31171394, 31171414, 30623003, 81172449), from National Key Basic Research and Development Program of China (2011CB915502) as well as Welch Foundation (I-1603) to JJ. LZ is the scholar of the Hundred Talents Program of the Chinese Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology

                Life sciences
                Life sciences

                Comments

                Comment on this article