6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A multifunctional self-dissociative polyethyleneimine derivative coating polymer for enhancing the gene transfection efficiency of DNA/polyethyleneimine polyplexes in vitro and in vivo

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted drug delivery via the folate receptor.

          The folate receptor is a highly selective tumor marker overexpressed in greater than 90% of ovarian carcinomas. Two general strategies have been developed for the targeted delivery of drugs to folate receptor-positive tumor cells: by coupling to a monoclonal antibody against the receptor and by coupling to a high affinity ligand, folic acid. First, antibodies against the folate receptor, including their fragments and derivatives, have been evaluated for tumor imaging and immunotherapy clinically and have shown significant targeting efficacy in ovarian cancer patients. Folic acid, a high affinity ligand of the folate receptor, retains its receptor binding properties when derivatized via its gamma-carboxyl. Folate conjugation, therefore, presents an alternative method of targeting the folate receptor. This second strategy has been successfully applied in vitro for the receptor-specific delivery of protein toxins, anti-T-cell receptor antibodies, interleukin-2, chemotherapy agents, gamma-emitting radiopharmaceuticals, magnetic resonance imaging contrast agents, liposomal drug carriers, and gene transfer vectors. Low molecular weight radiopharmaceuticals based on folate conjugates showed much more favorable pharmacokinetic properties than radiolabeled antibodies and greater tumor selectivity in folate receptor-positive animal tumor models. The small size, convenient availability, simple conjugation chemistry, and presumed lack of immunogenicity of folic acid make it an ideal ligand for targeted delivery to tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes.

            The "proton sponge hypothesis" postulates enhanced transgene delivery by cationic polymer-DNA complexes (polyplexes) containing H+ buffering polyamines by enhanced endosomal Cl- accumulation and osmotic swelling/lysis. To test this hypothesis, we measured endosomal Cl- concentration, pH, and volume after internalization of polyplexes composed of plasmid DNA and polylysine (POL), a non-buffering polyamine, or the strongly buffering polyamines polyethylenimine (PEI) or polyamidoamine (PAM). [Cl-] and pH were measured by ratio imaging of fluorescently labeled polyplexes containing Cl- or pH indicators. [Cl-] increased from 41 to 80 mM over 60 min in endosomes-contained POL-polyplexes, whereas pH decreased from 6.8 to 5.3. Endosomal Cl- accumulation was enhanced (115 mM at 60 min) and acidification was slowed (pH 5.9 at 60 min) for PEI and PAM-polyplexes. Relative endosome volume increased 20% over 75 min for POL-polyplexes versus 140% for PEI-polyplexes. Endosome lysis was seen at >45 min for PEI but not POL-containing endosomes, and PEI-containing endosomes showed increased osmotic fragility in vitro. The slowed endosomal acidification and enhanced Cl- accumulation and swelling/lysis were accounted for by the greater H+ buffering capacity of endosomes containing PEI or PAM versus POL (>90 mM versus 46 H+/pH unit). Our results provide direct support for the proton sponge hypothesis and thus a rational basis for the design of improved non-viral vectors for gene delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives.

              The continually increasing wealth of knowledge about the role of genes involved in acquired or hereditary diseases renders the delivery of regulatory genes or nucleic acids into affected cells a potentially promising strategy. Apart from viral vectors, non-viral gene delivery systems have recently received increasing interest, due to safety concerns associated with insertional mutagenesis of retro-viral vectors. Especially cationic polymers may be particularly attractive for the delivery of nucleic acids, since they allow a vast synthetic modification of their structure enabling the investigation of structure-function relationships. Successful clinical application of synthetic polycations for gene delivery will depend primarily on three factors, namely (1) an enhancement of the transfection efficiency, (2) a reduction in toxicity and (3) an ability of the vectors to overcome numerous biological barriers after systemic or local administration. Among the polycations presently used for gene delivery, poly(ethylene imine), PEI, takes a prominent position, due to its potential for endosomal escape. PEI as well as derivatives of PEI currently under investigation for DNA and RNA delivery will be discussed. This review focuses on structure-function relationships and the physicochemical aspects of polyplexes which influence basic characteristics, such as complex formation, stability or in vitro cytotoxicity, to provide a basis for their application under in vivo conditions. Rational design of optimized polycations is an objective for further research and may provide the basis for a successful cationic polymer-based gene delivery system in the future. Copyright (c) 2005 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                PCOHC2
                Polym. Chem.
                Polym. Chem.
                Royal Society of Chemistry (RSC)
                1759-9954
                1759-9962
                2015
                2015
                : 6
                : 5
                : 780-796
                Article
                10.1039/C4PY01135J
                d5ca3d01-9854-4715-b333-f2efc27f8ded
                © 2015
                History

                Comments

                Comment on this article