71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sparse permutation invariant covariance estimation

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The paper proposes a method for constructing a sparse estimator for the inverse covariance (concentration) matrix in high-dimensional settings. The estimator uses a penalized normal likelihood approach and forces sparsity by using a lasso-type penalty. We establish a rate of convergence in the Frobenius norm as both data dimension \(p\) and sample size \(n\) are allowed to grow, and show that the rate depends explicitly on how sparse the true concentration matrix is. We also show that a correlation-based version of the method exhibits better rates in the operator norm. We also derive a fast iterative algorithm for computing the estimator, which relies on the popular Cholesky decomposition of the inverse but produces a permutation-invariant estimator. The method is compared to other estimators on simulated data and on a real data example of tumor tissue classification using gene expression data.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Sparse inverse covariance estimation with the graphical lasso.

          We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.

              Oligonucleotide arrays can provide a broad picture of the state of the cell, by monitoring the expression level of thousands of genes at the same time. It is of interest to develop techniques for extracting useful information from the resulting data sets. Here we report the application of a two-way clustering method for analyzing a data set consisting of the expression patterns of different cell types. Gene expression in 40 tumor and 22 normal colon tissue samples was analyzed with an Affymetrix oligonucleotide array complementary to more than 6,500 human genes. An efficient two-way clustering algorithm was applied to both the genes and the tissues, revealing broad coherent patterns that suggest a high degree of organization underlying gene expression in these tissues. Coregulated families of genes clustered together, as demonstrated for the ribosomal proteins. Clustering also separated cancerous from noncancerous tissue and cell lines from in vivo tissues on the basis of subtle distributed patterns of genes even when expression of individual genes varied only slightly between the tissues. Two-way clustering thus may be of use both in classifying genes into functional groups and in classifying tissues based on gene expression.
                Bookmark

                Author and article information

                Journal
                2008-01-31
                2008-06-26
                Article
                10.1214/08-EJS176
                0801.4837
                d6695f03-7a82-4a87-8d2a-59d63062857c
                History
                Custom metadata
                62H20 (Primary) 62H12 (Secondary)
                IMS-EJS-EJS_2008_176
                Electronic Journal of Statistics 2008, Vol. 2, 494-515
                Published in at http://dx.doi.org/10.1214/08-EJS176 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org)
                math.ST stat.TH
                vtex

                Statistics theory
                Statistics theory

                Comments

                Comment on this article