3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Introspective Approach: A Lifetime of Parkinson’s Disease Research and Not Much to Show for It Yet?

      discussion
      Cells
      MDPI
      Parkinson’s disease, alpha-synuclein, genetics, deep brain stimulation, organoids, anatomy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          I feel part of a massive effort to understand what is wrong with motor systems in the brain relating to Parkinson’s disease. Today, the symptoms of the disease can be modified slightly, but dopamine neurons still die; the disease progression continues inexorably. Maybe the next research phase will bring the power of modern genetics to bear on halting, or better, preventing cell death. The arrival of accessible human neuron assemblies in organoids perhaps will provide a better access to the processes underlying neuronal demise.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Optogenetic stimulation of a hippocampal engram activates fear memory recall

          A specific memory is thought to be encoded by a sparse population of neurons 1,2 . These neurons can be tagged during learning for subsequent identification 3 and manipulation 4,5,6 . Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, a critical question of sufficiency remains: can one elicit the behavioral output of a specific memory by directly activating a population of neurons that was active during learning? Here we show that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behavior. We labeled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) 7,8 and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear conditioned mice with cells labeled by EYFP instead of ChR2. Finally, activation of cells labeled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context-specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The functional anatomy of basal ganglia disorders.

            Basal ganglia disorders are a heterogeneous group of clinical syndromes with a common anatomic locus within the basal ganglia. To account for the variety of clinical manifestations associated with insults to various parts of the basal ganglia we propose a model in which specific types of basal ganglia disorders are associated with changes in the function of subpopulations of striatal projection neurons. This model is based on a synthesis of experimental animal and post-mortem human anatomic and neurochemical data. Hyperkinetic disorders, which are characterized by an excess of abnormal movements, are postulated to result from the selective impairment of striatal neurons projecting to the lateral globus pallidus. Hypokinetic disorders, such as Parkinson's disease, are hypothesized to result from a complex series of changes in the activity of striatal projection neuron subpopulations resulting in an increase in basal ganglia output. This model suggests that the activity of subpopulations of striatal projection neurons is differentially regulated by striatal afferents and that different striatal projection neuron subpopulations may mediate different aspects of motor control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci

              Robert Graham and colleagues carried out a GWAS meta-analysis for Parkinson's disease (PD) and report 17 new risk loci. Their analyses support a key role for autophagy and lysosomal biology in PD risk.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                28 February 2021
                March 2021
                : 10
                : 3
                : 513
                Affiliations
                Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495, Japan; gordon@ 123456oist.jp
                Author information
                https://orcid.org/0000-0002-3386-8362
                Article
                cells-10-00513
                10.3390/cells10030513
                7997292
                33670933
                d6e0196b-d509-4d23-88c1-5d8c98cf3a30
                © 2021 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 February 2021
                : 23 February 2021
                Categories
                Commentary

                parkinson’s disease,alpha-synuclein,genetics,deep brain stimulation,organoids,anatomy

                Comments

                Comment on this article