Blog
About

8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular Vesicles as Conveyors of Membrane-Derived Bioactive Lipids in Immune System

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the last 20 years, extracellular vesicles (EVs) have been established as an additional way to transmit signals outside the cell. They are membrane-surrounded structures of nanometric size that can either originate from the membrane invagination of multivesicular bodies of the late endosomal compartment (exosomes) or bud from the plasma membrane (microvesicles). They contain proteins, lipids, and nucleic acids—namely miRNA, but also mRNA and lncRNA—which are derived from the parental cell, and have been retrieved in every fluid of the body. As carriers of antigens, either alone or in association with major histocompatibility complex (MHC) class II and class I molecules, their immunomodulatory properties have been extensively investigated. Moreover, recent studies have shown that EVs may carry and deliver membrane-derived bioactive lipids that play an important function in the immune system and related pathologies, such as prostaglandins, leukotrienes, specialized pro-resolving mediators, and lysophospholipids. EVs protect bioactive lipids from degradation and play a role in the transcellular synthesis of prostaglandins and leukotrienes. Here, we summarized the role of EVs in the regulation of immune response, specifically focusing our attention on the emerging role of EVs as carriers of bioactive lipids, which is important for immune system function.

          Related collections

          Most cited references 147

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            B lymphocytes secrete antigen-presenting vesicles

            Antigen-presenting cells contain a specialized late endocytic compartment, MIIC (major histocompatibility complex [MHC] class II- enriched compartment), that harbors newly synthesized MHC class II molecules in transit to the plasma membrane. MIICs have a limiting membrane enclosing characteristic internal membrane vesicles. Both the limiting membrane and the internal vesicles contain MHC class II. In this study on B lymphoblastoid cells, we demonstrate by immunoelectron microscopy that the limiting membrane of MIICs can fuse directly with the plasma membrane, resulting in release from the cells of internal MHC class II-containing vesicles. These secreted vesicles, named exosomes, were isolated from the cell culture media by differential centrifugation followed by flotation on sucrose density gradients. The overall surface protein composition of exosomes differed significantly from that of the plasma membrane. Exosome-bound MHC class II was in a compact, peptide-bound conformation. Metabolically labeled MHC class II was released into the extracellular medium with relatively slow kinetics, 10 +/- 4% in 24 h, indicating that direct fusion of MIICs with the plasma membrane is not the major pathway by which MHC class II reaches the plasma membrane. Exosomes derived from both human and murine B lymphocytes induced antigen-specific MHC class II-restricted T cell responses. These data suggest a role for exosomes in antigen presentation in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

              Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 April 2018
                April 2018
                : 19
                : 4
                Affiliations
                [1 ]Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; krizia.sagini@ 123456studenti.unipg.it (K.S.); eva.costanzi@ 123456studenti.unipg.it (E.C.); carla.emiliani@ 123456unipg.it (C.E.)
                [2 ]Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
                Author notes
                [* ]Correspondence: sandra.buratta@ 123456unipg.it (S.B); lorena.urbanelli@ 123456unipg.it (L.U.); Tel.: +39-075-585-7440 (S.B. & L.U.); Fax: +39-075-585-7436 (S.B. & L.U.)
                Article
                ijms-19-01227
                10.3390/ijms19041227
                5979532
                29670015
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article