6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying the Population-Level Effect of the COVID-19 Mass Vaccination Campaign in Israel: A Modeling Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Estimating real-world vaccine effectiveness is challenging as a variety of population factors can impact vaccine effectiveness. We aimed to assess the population-level reduction in cumulative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases, hospitalizations, and mortality due to the BNT162b2 mRNA coronavirus disease 2019 (COVID-19) vaccination campaign in Israel during January–February 2021.

          Methods

          A susceptible-infected-recovered/removed (SIR) model and a Dynamic Survival Analysis (DSA) statistical approach were used. Daily counts of individuals who tested positive and of vaccine doses administered, obtained from the Israeli Ministry of Health, were used to calibrate the model. The model was parameterized using values derived from a previous phase of the pandemic during which similar lockdown and other preventive measures were implemented in order to take into account the effect of these prevention measures on COVID-19 spread.

          Results

          Our model predicted for the total population a reduction of 648 585 SARS-CoV-2 cases (75% confidence interval [CI], 25 877–1 396 963) during the first 2 months of the vaccination campaign. The number of averted hospitalizations for moderate to severe conditions was 16 101 (75% CI, 2010–33 035), and reduction of death was estimated at 5123 (75% CI, 388–10 815) fatalities. Among children aged 0–19 years, we estimated a reduction of 163 436 (75% CI, 0–433 233) SARS-CoV-2 cases, which we consider to be an indirect effect of the vaccine.

          Conclusions

          Our results suggest that the rapid vaccination campaign prevented hundreds of thousands of new cases as well as thousands of hospitalizations and fatalities and has probably averted a major health care crisis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting

          Abstract Background As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) commence worldwide, vaccine effectiveness needs to be assessed for a range of outcomes across diverse populations in a noncontrolled setting. In this study, data from Israel’s largest health care organization were used to evaluate the effectiveness of the BNT162b2 mRNA vaccine. Methods All persons who were newly vaccinated during the period from December 20, 2020, to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according to demographic and clinical characteristics. Study outcomes included documented infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symptomatic Covid-19, Covid-19–related hospitalization, severe illness, and death. We estimated vaccine effectiveness for each outcome as one minus the risk ratio, using the Kaplan–Meier estimator. Results Each study group included 596,618 persons. Estimated vaccine effectiveness for the study outcomes at days 14 through 20 after the first dose and at 7 or more days after the second dose was as follows: for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); and for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100), respectively. Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14 through 20 after the first dose. Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. Conclusions This study in a nationwide mass vaccination setting suggests that the BNT162b2 mRNA vaccine is effective for a wide range of Covid-19–related outcomes, a finding consistent with that of the randomized trial.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data

            Background Following the emergency use authorisation of the Pfizer–BioNTech mRNA COVID-19 vaccine BNT162b2 (international non-proprietary name tozinameran) in Israel, the Ministry of Health (MoH) launched a campaign to immunise the 6·5 million residents of Israel aged 16 years and older. We estimated the real-world effectiveness of two doses of BNT162b2 against a range of SARS-CoV-2 outcomes and to evaluate the nationwide public-health impact following the widespread introduction of the vaccine. Methods We used national surveillance data from the first 4 months of the nationwide vaccination campaign to ascertain incident cases of laboratory-confirmed SARS-CoV-2 infections and outcomes, as well as vaccine uptake in residents of Israel aged 16 years and older. Vaccine effectiveness against SARS-CoV-2 outcomes (asymptomatic infection, symptomatic infection, and COVID-19-related hospitalisation, severe or critical hospitalisation, and death) was calculated on the basis of incidence rates in fully vaccinated individuals (defined as those for whom 7 days had passed since receiving the second dose of vaccine) compared with rates in unvaccinated individuals (who had not received any doses of the vaccine), with use of a negative binomial regression model adjusted for age group (16–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, and ≥85 years), sex, and calendar week. The proportion of spike gene target failures on PCR test among a nationwide convenience-sample of SARS-CoV-2-positive specimens was used to estimate the prevelance of the B.1.1.7 variant. Findings During the analysis period (Jan 24 to April 3, 2021), there were 232 268 SARS-CoV-2 infections, 7694 COVID-19 hospitalisations, 4481 severe or critical COVID-19 hospitalisations, and 1113 COVID-19 deaths in people aged 16 years or older. By April 3, 2021, 4 714 932 (72·1%) of 6 538 911 people aged 16 years and older were fully vaccinated with two doses of BNT162b2. Adjusted estimates of vaccine effectiveness at 7 days or longer after the second dose were 95·3% (95% CI 94·9–95·7; incidence rate 91·5 per 100 000 person-days in unvaccinated vs 3·1 per 100 000 person-days in fully vaccinated individuals) against SARS-CoV-2 infection, 91·5% (90·7–92·2; 40·9 vs 1·8 per 100 000 person-days) against asymptomatic SARS-CoV-2 infection, 97·0% (96·7–97·2; 32·5 vs 0·8 per 100 000 person-days) against symptomatic COVID-19, 97·2% (96·8–97·5; 4·6 vs 0·3 per 100 000 person-days) against COVID-19-related hospitalisation, 97·5% (97·1–97·8; 2·7 vs 0·2 per 100 000 person-days) against severe or critical COVID-19-related hospitalisation, and 96·7% (96·0–97·3; 0·6 vs 0·1 per 100 000 person-days) against COVID-19-related death. In all age groups, as vaccine coverage increased, the incidence of SARS-CoV-2 outcomes declined. 8006 of 8472 samples tested showed a spike gene target failure, giving an estimated prevalence of the B.1.1.7 variant of 94·5% among SARS-CoV-2 infections. Interpretation Two doses of BNT162b2 are highly effective across all age groups (≥16 years, including older adults aged ≥85 years) in preventing symptomatic and asymptomatic SARS-CoV-2 infections and COVID-19-related hospitalisations, severe disease, and death, including those caused by the B.1.1.7 SARS-CoV-2 variant. There were marked and sustained declines in SARS-CoV-2 incidence corresponding to increasing vaccine coverage. These findings suggest that COVID-19 vaccination can help to control the pandemic. Funding None.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Randomized, Controlled Trials, Observational Studies, and the Hierarchy of Research Designs

              New England Journal of Medicine, 342(25), 1887-1892
                Bookmark

                Author and article information

                Journal
                Open Forum Infect Dis
                Open Forum Infect Dis
                ofid
                Open Forum Infectious Diseases
                Oxford University Press (US )
                2328-8957
                May 2022
                18 February 2022
                18 February 2022
                : 9
                : 5
                : ofac087
                Affiliations
                [1 ] Department of Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva , Israel
                [2 ] Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
                [3 ] School of Mathematical Sciences, University of Nottingham , Nottingham, United Kingdom
                [4 ] Department of Geography and Division of Epidemiology, The Ohio State University, and Translational Data Analytics Institute Columbus , Columbus, Ohio, USA
                [5 ] Israel Center for Disease Control, Israel Ministry of Health , Ramat Gan, Israel
                [6 ] School of Public Health, University of Haifa , Haifa, Israel
                [7 ] Department of Mathematics, The Ohio State University , Columbus, Ohio, USA
                [8 ] University of Colorado School of Medicine , Aurora, Colorado, USA
                [9 ] Department of Pediatrics, Mayanei Hayeshuah Medical Center , Bnei Brak, Israel
                Author notes
                Correspondence: Eli Somekh, MD, Mayanei Hayeshuah Medical Center, 17 Povarski St, Bnei Brak, Israel ( esomekh@ 123456gmail.com ).

                Equal contribution

                Article
                ofac087
                10.1093/ofid/ofac087
                9043004
                35493128
                d79df3be-51d4-4ed4-b8e5-07b8cb8b08f4
                © The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 26 October 2021
                : 16 February 2022
                : 07 February 2022
                : 26 April 2022
                Page count
                Pages: 9
                Categories
                Major Article
                AcademicSubjects/MED00290

                covid-19,effect,modeling,real-life,vaccination
                covid-19, effect, modeling, real-life, vaccination

                Comments

                Comment on this article