16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipopolysaccharide (LPS) Accumulates in Neocortical Neurons of Alzheimer’s Disease (AD) Brain and Impairs Transcription in Human Neuronal-Glial Primary Co-cultures

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several independent laboratories have recently reported the detection of bacterial nucleic acid sequences or bacterial-derived neurotoxins, such as highly inflammatory lipopolysaccharide (LPS), within Alzheimer’s disease (AD) affected brain tissues. Whether these bacterial neurotoxins originate from the gastrointestinal (GI) tract microbiome, a possible brain microbiome or some dormant pathological microbiome is currently not well understood. Previous studies indicate that the co-localization of pro-inflammatory LPS with AD-affected brain cell nuclei suggests that there may be a contribution of this neurotoxin to genotoxic events that support inflammatory neurodegeneration and failure in homeostatic gene expression. In this report we provide evidence that in sporadic AD, LPS progressively accumulates in neuronal parenchyma and appears to preferentially associate with the periphery of neuronal nuclei. Run-on transcription studies utilizing [α- 32P]-uridine triphosphate incorporation into newly synthesized total RNA further indicates that human neuronal-glial (HNG) cells in primary co-culture incubated with LPS exhibit significantly reduced output of DNA transcription products. These studies suggest that in AD LPS may impair the efficient readout of neuronal genetic information normally required for the homeostatic operation of brain cell function and may contribute to a progressive disruption in the read-out of genetic information.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling.

          Alterations in transcription, RNA editing, translation, protein processing, and clearance are a consistent feature of Alzheimer's disease (AD) brain. To extend our initial study (Alzheimer Reports [2000] 3:161-167), RNA samples isolated from control and AD hippocampal cornu ammonis 1 (CA1) were analyzed for 12633 gene and expressed sequence tag (EST) expression levels using DNA microarrays (HG-U95Av2 Genechips; Affymetrix, Santa Clara, CA). Hippocampal CA1 tissues were carefully selected from several hundred potential specimens obtained from domestic and international brain banks. To minimize the effects of individual differences in gene expression, RNA of high spectral quality (A(260/280) > or= 1.9) was pooled from CA1 of six control or six AD subjects. Results were compared as a group; individual gene expression patterns for the most-changed RNA message levels were also profiled. There were no significant differences in age, postmortem interval (mean < or = 2.1 hr) nor tissue pH (range 6.6-6.9) between the two brain groups. AD tissues were derived from subjects clinically classified as CDR 2-3 (CERAD/NIA). Expression data were analyzed using GeneSpring (Silicon Genetics, Redwood City, CA) and Microarray Data Mining Tool (Affymetrix) software. Compared to controls and 354 background/alignment markers, AD brain showed a generalized depression in brain gene transcription, including decreases in RNA encoding transcription factors (TFs), neurotrophic factors, signaling elements involved in synaptic plasticity such as synaptophysin, metallothionein III, and metal regulatory factor-1. Three- or morefold increases in RNAs encoding DAXX, cPLA(2), CDP5, NF-kappaBp52/p100, FAS, betaAPP, DPP1, NFIL6, IL precursor, B94, HB15, COX-2, and CEX-1 signals were strikingly apparent. These data support the hypothesis of widespread transcriptional alterations, misregulation of RNAs involved in metal ion homeostasis, TF signaling deficits, decreases in neurotrophic support and activated apoptotic and neuroinflammatory signaling in moderately affected AD hippocampal CA1. Copyright 2002 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic mechanisms of neurodegeneration: a critical update

            Abstract Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin–proteosome–autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, ‘neuroinflammatory’ processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of neuroinflammation in neurodegeneration: new insights

              Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past 15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration. It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral immune cells. This is particularly relevant for the progression of Alzheimer’s disease, in which it has been demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal pathogens have also been associated with the development of the disease. To date, it is not clear whether these microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This review will discuss the impact of each of these challenges, and examine the changes known to occur with age in the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive decline.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                12 December 2017
                2017
                : 9
                : 407
                Affiliations
                [1] 1Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                [2] 2Departments of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                [3] 3Department of Neurology, Shengjing Hospital, China Medical University , Shenyang, China
                [4] 4Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                [5] 5Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center , New Orleans, LA, United States
                Author notes

                Edited by: Matthew Richard Chapman, University of Michigan, United States

                Reviewed by: Jorge Valero, Achucarro Basque Center for Neuroscience/Ikerbasque Basque Foundation for Science, Spain; Markus P. Kummer, University of Bonn, Germany

                *Correspondence: Walter J. Lukiw wlukiw@ 123456lsuhsc.edu
                Article
                10.3389/fnagi.2017.00407
                5732913
                29311897
                d7c61818-4e9f-4b6b-b398-c7f802ca8769
                Copyright © 2017 Zhao, Cong and Lukiw.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 September 2017
                : 24 November 2017
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 57, Pages: 9, Words: 6707
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: NIA AG18031 and NIA AG038834
                Categories
                Neuroscience
                Original Research

                Neurosciences
                alzheimer’s disease (ad),inflammatory degeneration,lipopolysaccharide (lps),rna pol ii transcription,run-on gene transcription

                Comments

                Comment on this article