8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many neurological diseases and delineating pathological regions have been analyzed, and the anatomical structure of the brain researched with the aid of magnetic resonance imaging (MRI). It is important to identify patients with Alzheimer’s disease (AD) early so that preventative measures can be taken. A detailed analysis of the tissue structures from segmented MRI leads to a more accurate classification of specific brain disorders. Several segmentation methods to diagnose AD have been proposed with varying complexity. Segmentation of the brain structure and classification of AD using deep learning approaches has gained attention as it can provide effective results over a large set of data. Hence, deep learning methods are now preferred over state-of-the-art machine learning methods. We aim to provide an outline of current deep learning-based segmentation approaches for the quantitative analysis of brain MRI for the diagnosis of AD. Here, we report how convolutional neural network architectures are used to analyze the anatomical brain structure and diagnose AD, discuss how brain MRI segmentation improves AD classification, describe the state-of-the-art approaches, and summarize their results using publicly available datasets. Finally, we provide insight into current issues and discuss possible future research directions in building a computer-aided diagnostic system for AD.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.

          All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms ("SPM2-type" and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain tumor segmentation with Deep Neural Networks

            In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults.

              The Open Access Series of Imaging Studies is a series of magnetic resonance imaging data sets that is publicly available for study and analysis. The initial data set consists of a cross-sectional collection of 416 subjects aged 18 to 96 years. One hundred of the included subjects older than 60 years have been clinically diagnosed with very mild to moderate Alzheimer's disease. The subjects are all right-handed and include both men and women. For each subject, three or four individual T1-weighted magnetic resonance imaging scans obtained in single imaging sessions are included. Multiple within-session acquisitions provide extremely high contrast-to-noise ratio, making the data amenable to a wide range of analytic approaches including automated computational analysis. Additionally, a reliability data set is included containing 20 subjects without dementia imaged on a subsequent visit within 90 days of their initial session. Automated calculation of whole-brain volume and estimated total intracranial volume are presented to demonstrate use of the data for measuring differences associated with normal aging and Alzheimer's disease.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                07 June 2020
                June 2020
                : 20
                : 11
                : 3243
                Affiliations
                [1 ]Department of Information and Communications Engineering, Chosun University, Gwangju 61452, Korea; nagarajpy@ 123456chosun.ac.kr
                [2 ]Division of Computer & Electronic Systems Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea; jychoi@ 123456hufs.ac.kr
                Author notes
                [* ]Correspondence: bslee@ 123456chosun.ac.kr
                Author information
                https://orcid.org/0000-0001-6701-1802
                https://orcid.org/0000-0003-2482-1869
                Article
                sensors-20-03243
                10.3390/s20113243
                7313699
                32517304
                d8175678-7c64-46f7-a789-75f901cc93b7
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 April 2020
                : 03 June 2020
                Categories
                Review

                Biomedical engineering
                magnetic resonance imaging,alzheimer’s disease,deep learning
                Biomedical engineering
                magnetic resonance imaging, alzheimer’s disease, deep learning

                Comments

                Comment on this article