25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased CD4+/CD8+ Double-Positive T Cells in Chronic Chagasic Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          CD4+/CD8+ double positive (DP) T cells have been described in healthy individuals as well as in patients with autoimmune and chronic infectious diseases. In chronic viral infections, this cell subset has effector memory phenotype and displays antigen specificity. No previous studies of double positive T cells in parasite infections have been carried out.

          Methodology/Principal Findings

          Seventeen chronic chagasic patients (7 asymptomatic and 10 symptomatic) and 24 non-infected donors, including 12 healthy and 12 with non-chagasic cardiomyopathy donors were analyzed. Peripheral blood was stained for CD3, CD4, CD8, HLA-DR and CD38, and lymphocytes for intracellular perforin. Antigen specificity was assessed using HLA*A2 tetramers loaded with T. cruzi K1 or influenza virus epitopes. Surface expression of CD107 and intracellular IFN-γ production were determined in K1-specific DP T cells from 11 chagasic donors. Heart tissue from a chronic chagasic patient was stained for both CD8 and CD4 by immunochemistry. Chagasic patients showed higher frequencies of DP T cells (2.1%±0.9) compared with healthy (1.1%±0.5) and non-chagasic cardiomyopathy (1.2%±0.4) donors. DP T cells from Chagasic patients also expressed more HLA-DR, CD38 and perforin and had higher frequencies of T. cruzi K1-specific cells. IFN-γ production in K1-specific cells was higher in asymptomatic patients after polyclonal stimulation, while these cells tended to degranulate more in symptomatic donors. Immunochemistry revealed that double positive T cells infiltrate the cardiac tissue of a chagasic donor.

          Conclusions

          Chagasic patients have higher percentages of circulating double positive T cells expressing activation markers, potential effector molecules and greater class I antigenic specificity against T. cruzi. Although K1 tetramer positive DP T cell produced little IFN-γ, they displayed degranulation activity that was increased in symptomatic patients. Moreover, K1-specific DP T cells can migrate to the heart tissue.

          Author Summary

          Chagas disease, produced by the blood parasite Trypanosoma cruzi, is considered a public health problem in Central and South America. Non sterile immunity can be achieved after acute infection. Parasite persistence can induce tissue damage in nearly 20% to 30% of chronically infected individuals. Indeed, chagasic cardiomyopathy is one of the consequences of the chronic infection. Antigen persistence and dysfunctional cellular immune response have been implicated in T. cruzi pathogenesis. Here, a higher frequency of circulating CD4+/CD8+ double positive T cells in chronic chagasic patients is reported as compared with non infected donors, including those with a non-chagasic cardiomyopathy. This cell subset also expressed more activation markers and stored more intracellular perforin. We have previously reported that CD8+ T cells from T. cruzi infected donors recognized the HLA-A*0201 restricted K1-peptide derived from the KMP-11 protein. Here, double positive T cells displayed higher percentages of recognition for the K1 peptide than single CD8+ T cells. These cells produce little IFN-γ, but display degranulation activity that was increased in the symptomatic group. Finally, double positive T cells can be localized in the heart tissue from a chronic chagasic donor.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis.

          Experimental cerebral malaria (ECM) resulting from Plasmodium berghei ANKA infection involves T lymphocytes. However, the mechanisms of T cell-mediated pathogenesis remain unknown. We found that, in contrast to ECM-susceptible C57BL6 mice, perforin-deficient (PFP-KO) mice were resistant to ECM in the absence of brain lesions, whereas cytoadherence of parasitized erythrocytes and massive accumulation of activated/effector CD8 lymphocytes were observed in both groups of mice. ECM is induced in PFP-KO mice after adoptive transfer of cytotoxic CD8+ cells from infected C57BL6 mice, which were directed to the brain of PFP-KO mice. This specific recruitment might involve chemokine/chemokine receptors, since their expression was up-regulated on activated CD8 cells, and susceptibility to ECM was delayed in CCR5-KO mice. Thus, lymphocyte cytotoxicity and cell trafficking are key players in ECM pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chagas disease: 100 years after its discovery. A systemic review.

            Although Chagas disease was only discovered in 1909, it began millions of years ago as an enzootic disease among wild animals. Its transmission to man began accidentally as an anthropozoonosis when mankind invaded wild ecotopes. Endemic Chagas disease became established as a zoonosis over the last 200-300 years through deforestation for agriculture and livestock rearing and adaptation of triatomines to dwellings and to humans and domestic animals as food sources. When T. cruzi is transmitted to man, it invades the bloodstream and lymphatic system and lodges in muscle and heart tissue, the digestive system and phagocytic cells. Through this, it causes inflammatory lesions and an immune response, particularly mediated by CD4(+), CD8(+), IL2 and IL4, with cell and neuron destruction and fibrosis. These processes lead to blockage of the heart's conductive system, arrhythmias, heart failure, aperistalsis and dilatation of hollow viscera, especially the esophagus and colons. Chagas disease is characterized by an acute phase with or without symptoms, with (or more often without) T. cruzi penetration signs (inoculation chagoma or Romaña's sign), fever, adenomegaly, hepatosplenomegaly and patent parasitemia; and a chronic phase: indeterminate (asymptomatic, with normal electrocardiogram and heart, esophagus and colon X-rays) or cardiac, digestive or cardiac/digestive forms. There is great regional variation in the morbidity caused by Chagas disease: severe cardiac or digestive forms may occur in 10-50%, and indeterminate forms in the remaining, asymptomatic cases. The epidemiological and control characteristics of Chagas disease vary according to each country's ecological conditions and health policies. 2010. Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions.

              Although an increased frequency of CD4(+)CD8(+) T cells has been observed in the peripheral blood during viral infections, their role, function, and biologic significance are still poorly understood. Here we demonstrate that the circulating CD4(+)CD8(+) T-cell population contains mature effector memory lymphocytes specific for antigens of multiple past, latent, and high-level persistent viral infections. Upon in vitro antigenic challenge, a higher frequency of CD4(+)CD8(+) than single-positive cells displayed a T helper 1/T cytotoxic 1 (Th1/Tc1) cytokine profile and proliferated. Ex vivo, more double-positive than single-positive cells exhibited a differentiated phenotype. Accordingly, their lower T-cell receptor excision circles (TREC) content and shorter telomeres proved they had divided more frequently than single-positive cells. Consistent with expression of the tissue-homing marker CXCR3, CD4(+)CD8(+) T cells were demonstrated in situ at the site of persistent viral infection (ie, in the liver during chronic hepatitis C). Finally, a prospective analysis of hepatitis C virus (HCV) infection in a chimpanzee, the only animal model for HCV infection, showed a close correlation between the frequency of activated CD4(+)CD8(+) T cells and viral kinetics. Collectively, these findings demonstrate that peripheral CD4(+)CD8(+) T cells take part in the adaptive immune response against infectious pathogens and broaden the perception of the T-cell populations involved in antiviral immune responses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                August 2011
                23 August 2011
                : 5
                : 8
                : e1294
                Affiliations
                [1 ]Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
                [2 ]Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
                [3 ]Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
                [4 ]Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
                [5 ]Grupo de Infección y Cáncer, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
                [6 ]Instituto de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
                [7 ]Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
                [8 ]Clínica Abood Shaio, Bogotá, Colombia
                [9 ]Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
                Federal University of São Paulo, Brazil
                Author notes

                Conceived and designed the experiments: NAG NIB AC AMU AB CJP JMG. Performed the experiments: NAG NIB AB NO AMU JMG. Analyzed the data: NAG AC FG AMU CJP JMG. Contributed reagents/materials/analysis tools: FG AB NO NR ZMC FR VV CJP JMG. Wrote the paper: NAG AC CJP JMG. Diagnosis of patients: NAG NIB ZMC NR FR VV. Obtained informed consent from patients: NAG NIB ZMC NR FR VV. Sample collections: NAG NIB ZMC NR FR VV.

                Article
                PNTD-D-10-00039
                10.1371/journal.pntd.0001294
                3160296
                21886854
                d8194c78-ddab-432f-a888-b55835c7df4a
                Giraldo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 4 October 2010
                : 19 July 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                T Cells
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Chagas Disease

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article