5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multi-Model Ensembles (MMEs) are used for improving the performance of GCM simulations. This study evaluates the performance of MMEs of precipitation, maximum temperature and minimum temperature over a tropical river basin in India developed by various techniques like arithmetic mean, Multiple Linear Regression (MLR), Support Vector Machine (SVM), Extra Tree Regressor (ETR), Random Forest (RF) and long short-term memory (LSTM). The 21 General Circulation Models (GCMs) from National Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset and 13 GCMs of Coupled Model Inter-comparison Project, Phase 6 (CMIP6) are used for this purpose. The results of the study reveal that the application of a LSTM model for ensembling performs significantly better than models in the case of precipitation with a coefficient of determination (R 2) value of 0.9. In case of temperature, all the machine learning (ML) methods showed equally good performance, with RF and LSTM performing consistently well in all the cases of temperature with R 2 value ranging from 0.82 to 0.93. Hence, based on this study RF and LSTM methods are recommended for creation of MMEs in the basin. In general, all ML approaches performed better than mean ensemble approach.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long Short-Term Memory

            Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Overview of CMIP5 and the Experiment Design

              The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades and the future to year 2035. These “decadal predictions” are initialized based on observations and will be used to explore the predictability of climate and to assess the forecast system's predictive skill. The CMIP5 experiment design also allows for participation of stand-alone atmospheric models and includes a variety of idealized experiments that will improve understanding of the range of model responses found in the more complex and realistic simulations. An exceptionally comprehensive set of model output is being collected and made freely available to researchers through an integrated but distributed data archive. For researchers unfamiliar with climate models, the limitations of the models and experiment design are described.
                Bookmark

                Author and article information

                Contributors
                dinumariajose@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2022
                18 March 2022
                2022
                : 12
                : 4678
                Affiliations
                [1 ]GRID grid.444525.6, ISNI 0000 0000 9398 3798, Department of Water Resources and Ocean Engineering, , National Institute of Technology Karnataka, ; Surathkal, Mangaluru, India
                [2 ]GRID grid.444525.6, ISNI 0000 0000 9398 3798, Department of Mathematical and Computational Sciences, , National Institute of Technology Karnataka, ; Surathkal, Mangaluru, India
                Author information
                https://orcid.org/0000-0001-9760-1491
                https://orcid.org/0000-0002-0009-5017
                https://orcid.org/0000-0003-0338-7696
                Article
                8786
                10.1038/s41598-022-08786-w
                8933560
                35304552
                d847f7d9-d03a-41d3-af02-53246ac87a46
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 June 2021
                : 25 February 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                climate change,hydrology
                Uncategorized
                climate change, hydrology

                Comments

                Comment on this article