1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibin βE ( INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The liver plays a major role in whole-body energy homeostasis by releasing secretory factors, termed hepatokines. To identify novel target genes associated with insulin resistance, we performed a comprehensive analysis of gene expression profiles using a DNA chip method in liver biopsy samples from humans with varying degrees of insulin resistance. Inhibin βE ( INHBE) was identified as a novel putative hepatokine with hepatic gene expression that positively correlated with insulin resistance and body mass index in humans. Quantitative real time-PCR analysis also showed an increase in INHBE gene expression in independent liver samples from insulin-resistant human subjects. Additionally, Inhbe gene expression increased in the livers of db/db mice, a rodent model of type 2 diabetes. To preliminarily screen the role of Inhbe in vivo in whole-body energy metabolic status, hepatic mRNA was knocked down with siRNA for Inhbe (siINHBE) in db/db mice. Treatment with siINHBE suppressed body weight gain during the two-week experimental period, which was attributable to diminished fat rather than lean mass. Additionally, treatment with siINHBE decreased the respiratory quotient and increased plasma total ketone bodies compared with treatment with non-targeting siRNA, both of which suggest enhanced whole-body fat utilization. Our study suggests that INHBE functions as a possible hepatokine to alter the whole-body metabolic status under obese insulin-resistant conditions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

          Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Double muscling in cattle due to mutations in the myostatin gene.

            Myostatin (GDF-8) is a member of the transforming growth factor beta superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective versus total insulin resistance: a pathogenic paradox.

              Mice with type 2 diabetes manifest selective hepatic insulin resistance: insulin fails to suppress gluconeogenesis but continues to activate lipogenesis, producing the deadly combination of hyperglycemia and hypertriglyceridemia. In this issue of Cell Metabolism, Biddinger et al. (2008) show that mice with total hepatic insulin resistance exhibit hyperglycemia without hypertriglyceridemia-a state paradoxically less severe than selective insulin resistance.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: ValidationRole: Writing – review & editing
                Role: Investigation
                Role: InvestigationRole: Methodology
                Role: InvestigationRole: Methodology
                Role: ConceptualizationRole: InvestigationRole: Methodology
                Role: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: InvestigationRole: Methodology
                Role: Funding acquisitionRole: Project administrationRole: Supervision
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 March 2018
                2018
                : 13
                : 3
                : e0194798
                Affiliations
                [1 ] Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
                [2 ] Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
                [3 ] Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
                [4 ] PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
                INRA, FRANCE
                Author notes

                Competing Interests: TT has received a grant support from Chugai Pharmaceutical Co, Ltd. Co-authors MS, MA, Y. Kushima, KH, YS, and Y. Kawabe are employed by Chugai Pharmaceutical Co, Ltd. There are no competing interests to declare for any of the other authors. These affiliations do not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Article
                PONE-D-17-34157
                10.1371/journal.pone.0194798
                5875797
                29596463
                d8977d4b-4b4e-4fe6-82e6-492d8426601b
                © 2018 Sugiyama et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 September 2017
                : 11 February 2018
                Page count
                Figures: 6, Tables: 1, Pages: 20
                Funding
                This work was supported by the Chugai Pharmaceutical Co., Ltd. The Chugai Pharmaceutical Co. Ltd. provided support in the form of salaries for authors MS, MA, Y. Kushima, KH, YS, and Y. Kawabe. TT received research grants from Chugai Pharmaceutical Co., Ltd. There are no products currently being developed or already in the market that are associated with this research. The funder provided support in the form of salaries for authors MS, MA, Y. Kushima, KH, YS, and Y. Kawabe as Chugai’s employees. The authors from the funder designed the study, collected the data and analyzed data for the animal studies. And these authors also contributed to analyze DNA chip and prepare the manuscript. The specific roles of these authors are shown in the ‘author contributions’ section.
                Categories
                Research Article
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNAs
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Medicine and Health Sciences
                Endocrinology
                Endocrine Physiology
                Insulin Resistance
                Biology and Life Sciences
                Physiology
                Endocrine Physiology
                Insulin Resistance
                Medicine and Health Sciences
                Physiology
                Endocrine Physiology
                Insulin Resistance
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Obesity
                Medicine and Health Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Obesity
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Adipose Tissue
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Adipose Tissue
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Insulin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Insulin
                Biology and Life Sciences
                Biochemistry
                Lipids
                Fats
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article